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Abstract—This paper is concerned with propagation of 

thermoelastic longitudinal vibrations of an infinite circular cylinder, 
in the context of the linear theory of generalized thermoelasticity 
with two relaxation time parameters (Green and Lindsay theory). 
Three displacement potential functions are introduced to uncouple 
the equations of motion. The frequency equation, by using the 
traction free boundary conditions, is given in the form of a 
determinant involving Bessel functions. The roots of the frequency 
equation give the value of the characteristic circular frequency as 
function of the wave number. These roots, which correspond to 
various modes, are numerically computed and presented graphically 
for different values of the thermal relaxation times. It is found that 
the influences of the thermal relaxation times on the amplitudes of 
the elastic and thermal waves are remarkable. Also, it is shown in 
this study that the propagation of thermoelastic longitudinal 
vibrations based on the generalized thermoelasticity can differ 
significantly compared with the results under the classical 
formulation. A comparison of the results for the case with no thermal 
effects shows well agreement with some of the corresponding earlier 
results. 
 

Keywords—Wave propagation; longitudinal vibrations; circular 
cylinder;  generalized thermoelasticity; Thermal relaxation times. 

I. INTRODUCTION 
HE propagation of waves in thermoelastic circular 
cylinder bodies with thermal relaxation times based on the 

generalized theory of thermoelasticity has been the topic for a 
lot of investigations in recent years. These investigations are 
considered to be important because of their possible extensive 
applications in various branches of science and technology. 
The fields of applications are astrophysics, geophysics, 
acoustics, plasma physics and seismology. 

When an isotropic and homogeneous elastic solid is 
subjected to a thermal disturbance, the effect is instantaneous 
at a location distant from the source in the classical linear 
thermoelastic theory. This means that the thermal wave 
propagates at infinite velocity which is a physically 
unreasonable result. Two generalized thermoelastic theories 
are proposed to eliminate that paradox and correct the 
classical theory on the assumption that a thermal wave 
propagates at finite velocity.  

These theories are: (i) Lord and Shulman's theory (L-S) 
[15], which involves one thermal relaxation time and is based 
on a new law of heat conduction to replace Fourier's law. The 
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heat equation is replaced by a hyperbolic one which ensures 
finite speeds of propagation for heat and elastic waves. (ii) the 
second theory of generalized thermoelasticity with two 
thermal relaxation times was first introduced by Green and 
Lindsay  (G-L) [12]. In this theory the temperature rates 
considered among the constitutive variables. This theory also 
predicts finite speeds of propagation as in   (L-S) theory. For a 
history of the thermodynamic theories on heat equation and a 
review of generalized thermoelasticity theories, see [3]. The 
elasto-dynamical analysis of cylinders and cylindrical shells 
without considering thermal effects is reviewed in [20], while 
introducing the thermal effects without thermal relaxation 
times is considered in [4], [8], [16] and [21]. Moreover, 
several problems reveal interesting phenomena characterizing 
the generalized thermoelasticity and its applications on a 
different hypothesis have been considered in [12], [11] and 
[19]. 

In this study, we consider the problem of thermoelastic 
longitudinal vibrations of an infinite circular cylinder. The 
treatment is in the framework of the generalized 
thermoelasticity theories with one or two thermal relaxation 
times. A formulation of generalized thermoelasticity which 
combines both generalized theories is used. The frequency 
equation has been derived in the form of a determinant 
involving Bessel functions. The roots of the frequency 
equation give the value of the characteristic circular frequency 
as function of the wave number for different values of the 
thermal relaxation times. These roots, which correspond to 
various modes, are numerically calculated and presented 
graphically. It is found that, due to the thermal relaxation 
times, the amplitude of both the elastic and thermal waves are 
higher than that of conventional theories. Moreover, it is noted 
that if the relaxation times are put equal zero in our results, we 
arrive at the results of Chadwich [4]. 

Recently, Abbas et al. [1] illustrated the effects of thermal 
relaxations times on thermoelastic interactions in an infinite 
orthotropic elastic medium with a cylindrical cavity. Abbas et 
al. [2] investigated the thermoelastic interaction in an infinite 
fibre-reinforced anisotropic plate containing a circular hole 
using Lord and Shulman model of the generalized 
thermoelastic theory with one thermal relaxation time. 
Chitikireddy et al. [7] presented a theoretical study of transient 
ultrasonic guided waves generated by concentrated heating of 
the outer surface of an infinite anisotropic hollow circular 
cylinder. Elhagary [9] considered the problem of a 
thermoelastic infinitely long hollow cylinder in the context of 
the theory of generalized thermoelastic diffusion with one 
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relaxation time. Hosseini et al. [13] are attempted to present 
an analytical solution to study the thermal and mechanical 
waves using theory of coupled thermoelasticity without 
energy dissipation based on Green–Naghdi model. 
Ponnusamy et al. [18] studied the wave propagation in an 
infinite, homogeneous, transversely isotropic solid cylinder of 
arbitrary cross-section Fourier expansion collocation method, 
within the frame work of linearized, three-dimensional theory 
of thermoelasticity 

II.  BASIC EQUATIONS 
The fundamental equations of the generalized 

thermoelasticity are given by: 
    *Equations of motion 

(1)                                  ijij uρσ =,  

    *Heat conduction equation 

(2)       )()(, ,, kkkkeii utuTTtTcT δγρκ +++=  

    *Stress-displacement-temperature relations 
 

(3)          [ ] ijkkijij TtT δγλεμεσ )(2 1+−+=     

* Strain- displacement relations: 

     (3')                   )( ,,2
1

ijjiij uu +=ε  

where 
ρ  Constant mass density, T

 
Absolute temperature, 

,λ μ
 

Lamé's constants, T
 

Reference temperature, 

t  First thermal relaxation time, c  Velocity of light, 

1t  Second thermal relaxation time, 
ijσ

 

Stress tensor, 

χ  Thermal diffusivity of the 
material, 

γ  (3 2 ) ,λ μ α+  

κ  Thermal conductivity 
coefficient, 

t  Time, 

ec  Specific heat at constant 
temperature, ijδ

 

Kroneker delta. 

α  Coefficient of linear thermal 
expansion, 

  

 
A superposed dot denotes differentiation with respect to 

time and a comma followed by a subscript denoted partial 
differentiation with respect to the corresponding coordinate. 

Each value of the parameter δ in the hear conduction 
equations (2) corresponds to either one of the three different 
theories: 
(i) Classical dynamical coupled theory, (C-D) [11]. 

i.e.,   ,0,01 === δtt  
(ii) Lord and Shulman's theory, (L-S) [15]. 

     i.e.,   ,1,0,0 1 ==> δtt  

(iii) Green and Lindsay's theory, (G-L) [12]. 
i.e.,   .0,01 =≥≥ δtt          

Eliminating ijσ  from equations (1) and (3), we find the 

equations of motion presented by the displacement 
components in the absence of body forces and heat sources for 
a thermoelastic medium have the form: 

2
, 1 ,( ) ( ) .k ki i i iu u T t T uλ μ μ γ ρ+ + − + =∇              (4) 

The displacement components iu  may be resolved into the 
sum of an irrotational and a solenoidal parts as follows: 

(5)                3,2,1,,,, =+= sriAeu rsirsii ϕ     

whereϕ  is the scalar potential and iA  is the vector potential. 
Substituting from (5) into (4) and (3), we may get the 

following system of equations: 

 (6)                     2
12

1

1 ( )T t T
c

γφ φ
ρ

∇ − = +  

(7)      2 2( ) ( )eT c T t T T tκ ρ γ φ δφ∇ = + + ∇ +    

(8)                            2
2
2

1 0i iA A
c

∇ − =  

where 1 ( 2 ) /c λ μ ρ= + is the velocity of the propagation of 

the elastic longitudinal wave, 2 /c μ ρ=  is the velocity of 
the elastic transverse wave and  
 

                       
2 2

2
2 2

1 1
r r rr z

∂ ∂ ∂
∇ = + − +

∂∂ ∂
       

III. FORMULATION AND SOLUTION OF THE PROBLEM 

Let ( , , )r zθ  be the cylindrical polar coordinates referred to 
the axis of the cylinder. We make use of the potential 
function. In the longitudinal disturbances the tangential 
component of displacement vanishes identically, i.e., 0.uθ =  

The vector potential iA  has the form (0, ,0)ψ , and the 
displacement components are given in terms of the scalar 
functions ( , , )r z tφ  and  ( , , )r z tψ  by: 

 

  ur r z
∂φ ∂ψ
∂ ∂

= − ,    0uθ = ,   1 ( ) .z
ru

z r r
φ ψ∂ ∂

= +
∂ ∂

      (9) 

 
To investigate wave motion in the thermoelastic circular 

cylinder, we consider solutions of equations (6)-(8) of the 
form: 

                
( , , ) ( )
( , , ) ( ) exp[ ( )].
( , , ) ( )

r z t r
r z t r i qz t

T r z t F r

φ
ψ ω

Φ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= Ψ −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

               (10) 
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where ω  is the frequency and q  is the wave number. 
Substituting equations (10) into (6)-(8), we obtain: 
 

(11)                      
2

1 22

1 ,d d F
r drdr

α αΦ Φ
+ + Φ = 

  
2 2

2
3 42 2

1 1 ,d F dF d dF q
r dr r drdr dr

α α
⎛ ⎞Φ Φ

+ + = + − Φ⎜ ⎟
⎝ ⎠

         (12)   

 

 (13)               
2

52 2

1 1( ) 0.d d
r drdr r

αΨ Ψ
+ + − Ψ = 

  
 With ,Φ Ψ  and T  are functions of r only, and we have 

set: 
2

2
1 2

1

q
c
ωα = − , 2 12

1

(1 )i t
c
γα ω

ρ
= −  

2
3 (1 )i i t qωα ω

χ
= − − ,  4 (1 )

i T
i t

ωγ
α ωδ

κ
−

= − , 

2
2

5 2
2

q
c
ωα = − , 

ec
κχ

ρ
=                           (14) 

 
The boundary conditions are: 
 

[ ] [ ]0, 0, 0.rr rzr a r a
r a

T
r

σ σ
= =

=

∂⎡ ⎤= = =⎢ ⎥∂⎣ ⎦
     (15) 

 
Introducing the following non-dimensional variables.  
 

* * * 2( , , ) ( , , )r z r z
c

r u u r u u
χ

= , 
2

* * * 2
1 1( , , ) ( , , )

c
t t t t t t

χ
= ,  

*
2
2c

χω ω= ,  *

2

q q
c
χ

= , 
2

* * *2
2( , ) ( , ),

c TT
T

φ ψ φ ψ
χ

= =   (16) 

 
One may get the equations (11)-(13) in the following form 

(dropping the superscript "*" for convenience) 
 

2

1 22

1d d m m F
r drdr

Φ Φ
+ + Φ =                         (17) 

 

   
2 2

2
2 42 2

1 1d F dF d dm F m q
r dr r drdr dr

⎛ ⎞Φ Φ
+ + = + − Φ⎜ ⎟

⎝ ⎠
        (18) 

  
2

52 2

1 1( ) 0d d m
r drdr r

Ψ Ψ
+ + − Ψ =                     (19) 

where we have define 
 

2 2
22

1 2
1

c
m q

c
ω

= − , 2 12
1

(1 )Tm i t
c
γ

ω
ρ

= − , 2
3 (1 )om i i t qω ω= − − ,  

4 (1 )o
im i tωγ δω
κ

−
= − , 2 2

5m qω= − 

  
The general solutions of equations (17), (18) and (19) 

assuming Φ, Ψ and F to be finite as r→0 may be expressed as 
 

2
1 1 1

2
2

1 2 2

1 [ ( ) ( )

( )]exp[ ( )]( )
o

o

F A m J r
m

m J r i qz tB

ζ ζ

ζ ζ ω

= −

+ − −

              (20) 

  
[ ]1 2[ ( ) ( )]exp ( )AJ r BJ r i qz tζ ζ ωΦ = + −             (21) 

 
[ ]1 3( ) exp ( )CJ r i qz tζ ωΨ = −                                  (22)          

  
where 
 

1 12 2 2 2
1 1 1 2 2 1 1 22 2( 4 ( 4), )s s s s s sζ ζ= − − = + − , 

2 2 2
3 qζ ω= − , 1 1 3 2 4s m m m m= + − ,  

2
2 1 3 2 4s m m m m q= +                           (23) 

 
and A, B and C are arbitrary constants and J , 1J  are Bessel 
functions of the orders zero and one respectively. From 
equations (20), (21) into (9) the displacement components are 
given by 
 

1 1 1 2 1 2

1 3

[ ( ) ( )
( )]exp[ ( )],

ru i Ai J r Bi J r
CqJ r i qz wt

ζ ζ ζ ζ
ζ

= +
− −

           (24) 

 
1 2

3 3

[ ( ) ( )
( )]exp[ ( )].

z o o

o

u AiqJ r BiqJ r
C J r i qz t
ζ ζ
ζ ζ ω

= +

+ −
              (25)   

                  
Substituting from equations (24), (25) and (21) into the 

boundary conditions (15), we get a set of three homogeneous 
linear equations connecting A, B and C as 

2 21
1 1 1

2
1 1 1 1

2

2 22
1 2 2

2
1 1 2 2

2

1 3 3 3

2
( ) 2

(1 )( ) ( )

2
( ) 2

(1 )( ) ( )

12 ( ) ( ) 0

o
o

o
o

o

A J a q
a

T
it m J a

m

B J a q
a

T
it m J a

m

C iq J a J a
a

ζ λ λζ ζ
μ μ

γ
ω ζ ζ

μ

ζ λ λζ ζ
μ μ

γ
ω ζ ζ

μ

ζ ζ ζ

⎧ ⎡⎛ ⎞⎪ − + +⎨ ⎢⎜ ⎟
⎝ ⎠⎪ ⎣⎩

⎫⎤ ⎪+ − − ⎬⎥
⎪⎦ ⎭

⎧ ⎡⎛ ⎞⎪+ − + +⎨ ⎢⎜ ⎟
⎝ ⎠⎪ ⎣⎩

⎫⎤ ⎪+ − − ⎬⎥
⎪⎦ ⎭

⎧ ⎫⎡ ⎤+ − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

                       (26)  

 
[ ] [ ]1 1 1 2 1 2

2 2
3 1 3

2 ( ) 2 ( )

( ) ( ) 0

A q J a B q J a

C i q J a

ζ ζ ζ ζ

ζ ζ

+

⎡ ⎤+ − =⎣ ⎦

                    (27)  
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2
1 1 1 1 1

2
1 2 2 1 2

( ) ( )

( ) ( ) 0

A m J a

B m J a

ζ ζ ζ

ζ ζ ζ

⎡ ⎤−⎣ ⎦
⎡ ⎤+ − =⎣ ⎦

               (28) 

  
Eliminating A, B and C from equations (26)-(28), we get 

the determinant of this set must vanish leading to the 
frequency equation (which is called "dispersion Relation" in 
the area of physics and engineering) as 

 

11 12 13

21 22 23

31 32

0
0

X X X
X X X
X X

Δ = =                           (29)  

 
 where we have set 
 

1
11 1 1 1 1

2
( ) ( ),oX J a J a

a
ζ

ζ ζ ζ= −  

2 22
12 1 2 2

2
1 1 2 2

2

2
( ) 2

(1 )( ) ( )o
o

X J a q
a

T
it m J a

m

ζ λ λζ ζ
μ μ

γ
ω ζ ζ

μ

⎧⎛ ⎞⎪= − + +⎨⎜ ⎟
⎪⎝ ⎠⎩

⎤
+ − − ⎥

⎦

13 1 3 3 3
12 ( ) ( )oX iq J a J a
a

ζ ζ ζ⎡ ⎤= −⎢ ⎥⎣ ⎦
, 

21 1 1 12 ( )X q J aζ ζ=  , 22 2 1 22 ( )X q J aζ ζ=  
2 2

23 3 1 3( ) ( )X i q J aζ ζ= − , 2
31 1 1 1 1 1( ) ( )X m J aζ ζ ζ= − ,  

2
32 1 2 2 1 2( ) ( )X m J aζ ζ ζ= −  

IV. NUMERICAL RESULTS AND DISCUSSIONS 
The calculation of the roots of the frequency equation (29) 

represents a major task and requires a rather extensive effort 
of numerical computation. Calculations have been carried out 
in electronic computer for the case of Copper as an example, 
for which the material constants at 27 °C are as follows [12]: 

38.93 /gm cmρ = , 12 21.387 10 /x dyne cmλ = ,  
12 20.448 10 /x dyne cmμ = , 0.56 / dege calc = ,  

0.918 / ( deg)cal s cmκ = , 81.67 10 1/ degxα −= 
  

The first three roots of the frequency equation (29) are 
calculated using bisection method (halving interval).  Figs. (1-
3) present the first three modes of the real part of the 
dimensionless frequency  Ω  versus the wave number q 
according to the Lord-Shulman (L-S) theory (when 

1.0, 1.5, 2.0ot = ). Fig. (4-6) show the first three modes of the 
real part of the dimensionless frequency  Ω  for green-Lindsay 
(G-L) theory versus different values of the wave number q 
when 11.0, 2.0, 3.0, 4.0ot t= = . Figs. (7-9) illustrate the first, 
second and third two modes of the real part of the 
dimensionless frequency Ω versus different values of q  for 

(L-S) and (G-L) theories. Figs. (10 and 11) exhibit  the first 
three modes of the real and imaginary parts of the 
dimensionless  frequency  Ω  for (D-L) theory  versus 
different values of the wave number q. Figs. (12 and 13) 
display the first three modes of the imaginary parts of the 
dimensionless  frequency  Ω for (L-S) and (G-L) theories  
versus different values of the wave number q. 

It is observed that the real part of the frequency Re( )ω  
increases as the wave number q  increases as well as the 
thermal relaxation times increase for all modes. Furthermore, 
it is easy to see that the real part of the frequency in (G-L) 
theory is always smaller than that of (L-S) theory which is 
also smaller than that of (C-D) theory. The influence of the 
second relaxation time is more significant when 1 ,t t>  but 
when the two thermal relaxation times are equal, we find that 
Re( )ω  versus q  is almost the same for (L-S) and (G-L) 
theories. The imaginary part of the frequency Im( )ω  is 
smaller than the real part Re( )ω . 

 

           
Fig. 1 The first mode of the real part of the dimensionless frequency  
Ω  for  (L-S) theory  versus different values of the wave number q 

when 0.2,5.1,0.1=ot  

     

       Fig. 2 The second mode of the real part of the dimensionless 
frequency  Ω  for (L-S) theory versus different values of the wave 

number q when 0.2,5.1,0.1=ot  
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Fig. 3 The third mode of the real part of the dimensionless frequency  
Ω  for (L-S) theory versus different values of the wave number q 

when 0.2,5.1,0.1=ot  

 

Fig. 4 The first mode of the real part of the dimensionless frequency  
Ω  For (G-L) theory versus different values of the wave number q 

when 0.4,0.3,0.2,0.1 1 == tto  

 

Fig. 5 The second mode of the real part of the dimensionless 
frequency  Ω  For (G-L) theory versus different values of the wave 

number q when 0.4,0.3,0.2,0.1 1 == tto  

 

Fig. 6 The third mode of the real part of the dimensionless frequency  
Ω  For (G-L) theory  versus different values of the wave number q 

when 0.4,0.3,0.2,0.1 1 == tto  

 

Fig. 7 The first two modes of the real part of   the dimensionless 
frequency Ω versus different values of q for (L-S) and (G-L)theories 

 

Fig. 8 The second two modes of the real part of the dimensionless 
frequency Ω versus different values of q for (L-S) and (G-L) theories 
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Fig. 9 The third two modes of the real part of the dimensionless 
frequency Ω versus different values of q for (L-S) and (G-L) theories 

 

Fig. 10 The first three modes of the real part of the dimensionless 
frequency  Ω  For (D-L) theory versus different values of the wave 

number q 

Fig. 11 The first three modes of the imaginary part of the 
dimensionless frequency Ω for (C-D) theory versus different values 

of the wave number q 
 

 Fig. 12 The first three modes of the imaginary part of the 
dimensionless frequency  Ω  For (L-S) theory versus different values 

of the wave number q 
 

 Fig. 13 The first three modes of the imaginary part of the 
dimensionless frequency  Ω  for (G-L) theory versus different values 

of the wave number q 
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