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Abstract—The aim of this study was to investigate the influence 

of reaction temperature and wheat straw moisture content on the 
pyrolysis product yields, in the temperature range of 475-575 °C. 
Samples of straw with moisture contents from 1.5 wt % to 15.0 wt % 
were fed to a bench scale Pyrolysis Centrifuge Reactor (PCR). The 
experimental results show that the changes in straw moisture content 
have no significant effect on the distribution of pyrolysis product 
yields. The maximum bio-oil yields approximately 60 (wt %, on dry 
ash free feedstock basis) was observed around 525 °C - 550 °C for all 
straw moisture levels. The water content in the wet straw bio-oil was 
the highest. The heating value of bio-oil and solid char were 
measured and the percentages of its energy distribution were 
calculated. The energy distributions of bio-oil, char and gas were 56-
69 % 24-33 %, and 2-19 %, respectively. 
 

Keywords—Flash pyrolysis, moisture content, wheat straw, bio-
oil. 

I. INTRODUCTION 
HE flash pyrolysis process has been subject of intense 
research in the last decades mainly with the objective to 

maximize the organics liquid yields [1], [2]. During pyrolysis, 
biomass is thermally decomposed without an oxidizing agent 
to produce a solid charcoal, liquid oil and gases. High heating 
rates of the biomass particles and a short gas residence time at 
temperature of 450 – 600 °C are required to obtain the highest 
possible liquid yield [3]. Depending on the feedstock and 
operating conditions, the flash pyrolysis of wood produces 50-
75 wt % of liquid bio-oil (including water), 15-25 wt % of 
solid char and 10-20 wt % of non-condensable gases [4], [5]. 
The process is a promising thermal conversion route of 
biomass to produce a nearly ash-free liquid fuel with a high 
volumetric energy density. The char contain most of the 
inorganic components and it can be used as an energy carrier 
or as a soil fertilizer [6], [7]. The pyrolysis gas can be used to 
generate electricity or to provide heat for the pyrolysis 
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process. The pyrolysis gas consists mainly of carbon 
monoxide, carbon dioxide and light hydrocarbons [8], [9]. 
Also, the liquid oil can be directly used without any upgrading 
as a fuel oil in many combustion applications such as boilers. 
Upgrading is probably needed if the bio-oil shall be applied to 
smaller engines. The liquid oil is composed of a large variety 
of higher molecular weight species, organic acids, aldehydes, 
alcohols, phenols and other oxygenates. This oil is also known 
as a pyrolysis liquid, bio-oil or tar and has a lower heating 
value of 15-20 MJ/kg , about half that of conventional fuel oil 
[10]. Bech and co-workers [11], [12] measured the heating 
value of bio-oil produced from wheat straw at a reactor 
temperature of 550 °C and the value was determined to 
approximately 15 MJ/kg (dry basis). The pyrolysis oil can 
undergo secondary reactions to be further broken down into 
gas, refractory tar and water [13], [14]. The distribution and 
the yield of the pyrolysis products depend on several operating 
parameters including biomass characteristic, feedstock particle 
size, temperature, heating rate, and reactor configuration, as 
well as the extraneous addition of catalysts [15]. 

Over the last two decades, extensive studies have been 
conducted to understand the flash pyrolysis process and to 
obtain the optimal conditions for producing high quality bio-
oil. The effect of biomass properties has been a research area, 
but only little attention has been focused on the effect of 
feedstock moisture content on wood flash pyrolysis [16] and 
none wheat straw moisture influence studies has been found. 
The presence of water in biomass could influence the 
pyrolysis behaviour and affects the physical properties and 
quality of the bio-oil. Previous studies [16]-[19] indicate that 
moisture may change the product composition or enhance 
some pyrolysis reactions. Shafizadeh [17] found that the 
decomposition rate of wet cellulose was much faster than that 
of dry cellulose when subjected to the same conditions in a 
closed system at 200 °C. Gray and co-workers [16] found that 
the presence of moisture increased the char yield by as much 
as 5 yield wt % (relative to dry sample). A recent study 
investigated the effect of wood moisture content on the flash 
pyrolysis oil yield [18]. They found that, as the wood moisture 
content increases, the char and gas yield increase and the 
produced water decreases but the liquid organics yield remains 
constant. In contrary, another researcher [19] found that the 
pyrolysis oil yield produced from conventional pyrolysis at a 
low heating rate of 0.1-1.0 c/s, was increased with increasing 
fuel moisture content and the oil obtained from dry feedstock 
was very viscous especially at higher temperatures. This paper 
reports results of a study on the effect of straw moisture 
content on wheat straw pyrolysis yield and the obtained 
product distribution. 
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II.  MATERIALS AND METHOD  

A. Material 
 The wheat straw pellets used in this study were 
manufactured by compressing straw and extruding it to pellets 
in a ‘Pellet Mill’. The pellets were crushed in a roller mill and 
were further screened into a fraction with a particle diameter < 
1.40 mm. The particles appeared to have a more or less 
spherical shape. An analysis of the wheat straw is shown in 
Table I. Straw samples with moisture contents of 1.5 % wt 
(‘dry’), 6.2 % wt (‘as received’) and 15.0 % wt (‘wet’) were 
used for the experiments. Wet straw samples were prepared by 
sprinkling water on it to achieve a moisture content of 15.0 ± 1 
% wt and storing it for 3 to 4 days to ensure that the water had 
been fully distributed. Dry straw samples were prepared by 
drying at 105 °C for at least 24 hr.  
 

TABLE I 
ANALYSIS OF WHEAT STRAW 

 
 

B. Apparatus and Procedure 
The flash pyrolysis experiments were conducted in a bench 

scale Pyrolysis Centrifuge Reactor (PCR) as depicted in Fig. 1 
[11], [12]. The set-up consists of a screw type feeder, an 
ablative centrifuge reactor, an electric heater, a cyclone, a 
condenser, a coalescer, a gas dryer and a pump. The biomass 
was introduced by the screw feeder into the horizontally 
oriented Ø 82 x 200 mm tubular reactor. Here, a three-blade 
rotor with a clearance of 2 mm to the reactor wall rotate at a 
fixed speed of 14800 rpm creating a centrifugal force at the 
pipe wall of approximately 1.0 x 104 g (acceleration), and 
thereby provides rotation of the gas and the biomass particles.   
The reactor wall was heated electrically by four independent 
heating zones located on the outer surface of the reactor tube. 
While undergoing reaction, the particles moved down the 
reactor pipe before leaving suspended in the gas through the 
tangential outlet. Larger char particles were removed by a 
change-in-flow separator whereas fines were collected by the 
cyclone. Vapors were condensed in a direct water cooled 
condenser (bubble chamber) filled with previously produced 
bio-oil. The temperature in the condenser was controlled to be 
55 to 75 °C by means of a pipe coil cooled by tap water. 
Aerosols that were not retained by the condenser were 
collected in a coalescer filled with ROCKWOOL® (fibers). In 
the coalescer aerosols were removed and the bio-oil was 
collected in a conical flask. The gas was pumped to the 
preheater and heated to 400 °C before it is recirculated to the 
reactor in order to maintain a desired gas residence time of 
0.2-0.3 s and avoid condensation of liquid products within the 
reactor. The amount of produced gas was measured by a 
temperature compensated gas meter and a sample was 
collected in a gas bag. Before the gas volume was measured, it 
was cooled to ambient temperature in order to remove water. 
The gas residence time in the reactor was calculated based on 
the experimental data obtained (from pyrolysis product yield). 
Details about the reactor are presented in previous work [12], 
[20]-[21]. 
 
 

 
 
 

Fig. 1 Schematic diagram of the ablative pyrolysis bench scale 
reactor system 

 
In this work, samples of straw with different moisture contents 

(1.5 wt %, 6.2 wt % and 15.0 wt %) were treated to investigate the 
moistures effect on the pyrolysis products distribution of bio-
oil, char, water and gas. To start an experiment, a 500.0 g 
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Fig. 5 Effect of straw moisture content and reactor temperature on the 

liquid organics yield 
 

 

 
 

Fig. 6 Effect of straw moisture content and reactor temperature on the 
pyrolysis char yield 

 

G.  Water Yield 
     The water yield discussed here is referring to the water that 
formed from the dehydration reactions throughout the 
pyrolysis process. The water produced by reaction for all 
straw moisture levels was measured as shown in Figure 8. The 
curves showed that the change in feedstock moisture content 
and reactor temperature has no significant effect on the water 
yield, and that a mean yield of 9 wt.% water was produced. 
The similar water yield of approximately 9.9 wt.% was 
obtained from forest-residue pyrolysis done at the VTT 
laboratory [32]. 

H.  Gas Molecular Weight 
Fig. 9 shows the effect of straw moisture contents and 

reactor temperatures on the pyrolysis gas molecular weight. It 
is seen that the gas molecular weight was not significantly 
affected by straw moisture content or temperature. The gas 
molecular weight was in the range of 31-35 g/mol. Bech et al. 
(2007) found the pyrolysis gas molecular weight from wheat 
straw to be approximately 37 g/mol and not affected by 

reactor temperatures [12], [21]. It was slightly higher probably 
due to the different characteristic of the used wheat straw. 

 

 
 

Fig. 7 Effect of straw moisture content and reactor temperature on the 
pyrolysis gas yield 

 

 
 

Fig. 8 Effect of straw moisture content and reactor temperature on the 
produced water yield 

 
 

 
 

Fig. 9 Effect of feedstock moisture content and reactor temperature 
on the pyrolysis gas molecular weight. 
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I. Gas Residence Time 
The gas residence times in the reactor was calculated based 

on the performance curve of the positive displacement gas 
pump and the yield data obtained from the experiments. The 
molecular weight of tar was taken to be 350 g/mol [11], [33] 
and it was assumed that the straw was instantaneously 
pyrolyzed when subjected to the reactor entrance. It was found 
that the gas residence time only changed a little with varying 
straw moisture content as seen in Fig. 10. In this experimental 
series, the hot gas residence time varied between 0.19 and 0.23 
s. It can be concluded that within this range the yields of 
products at different moisture content of feedstock were 
probably not affected by the small gas residence time changes 
seen in Fig. 10.  

 

 
 

Fig. 10 Effect of straw moisture content and reactor temperature on 
the gas residence times 

                 

J. Heating Values and Energy Distribution of the Pyrolysis 
Products 

The higher heating value of bio-oil and char were 
determined and their energy distributions were calculated as 
shown in Fig. 11. Bio-oils have a medium heating value in the 
range of 15-17 MJ/kg (as produced or wet basis), 
approximately half that of conventional fuel such as gasoline, 
kerosene and diesel [34]. However, the heating value of bio-
oil is very close to those of methanol and ethanol [34]. Char 
has a higher heating value of about 19-21 MJ/kg (as produced) 
and it is comparable with lignite and bituminous coal [34]. 
The energy distribution of bio-oil, char and gas for all straw 
types were around 56-69 %, 24-33%, 2-19 %, respectively, as 
seen in Fig. 11. At higher temperatures, the energy content of 
bio-oil and char reduce while the energy content in the 
pyrolysis gas increases. It is seen that an increased gas heating 
content can be obtained at high temperatures. This is 
important if the gas shall be used to supply energy for the 
pyrolysis process. 

 
Fig. 11 The percentage of energy distributions of pyrolysis products 
from different straw moisture content as a function of temperature 

IV. CONCLUSIONS 
The influence of straw moisture content and reactor 

temperature on the flash pyrolysis product yield has been 
experimentally investigated. In the current study the fraction 
of bio-oil, char and gases produced from pyrolysis of straw 
were in the range of 40-60 wt %, 18-50 wt.% and 5-22 wt.%, 
respectively, regardless of the straw moisture levels. The straw 
bio-oil yields obtained are slightly lower than the 50-75 wt.% 
that reported in the literatures for woody material [4], [5]. 
However the yield is reasonable due to the different feedstocks 
used. The optimal reaction temperature for the production of 
bio-oil was around 525 °C to 550 °C for all straw moisture 
contents. The presence of moisture in the feedstock has shown 
no significant effect on the pyrolysis product distribution. The 
liquid organics yields were similar for all straw types and the 
yields were almost constant at each reactor temperature. The 
similar observation was discovered by another study [18]. The 
gas and water yields were neither affected by the feedstock 
moisture level. The effect of straw moisture on char yield only 
can be observed at the lower temperature, 475 °C. At this 
temperature, wet straw produces the highest char yield 
followed by as received straw and finally dry straw. Gray et al. 
[16] and Westerhof et al. [18] also found that more moisture in 
the feedstock results in an increased char yield. 

Apparently, the pyrolysis temperatures have a dominant 
effect on the pyrolysis product yield. In general, the yield of 
liquid organics increased with increasing pyrolysis 
temperature from 475 °C to 550 °C and then decreases at 
higher temperatures. The gas yield kept increasing with 
reactor temperature due to secondary cracking takes place at 
higher temperatures, which in turn lead to a reduction of the 
liquid organics yield and an increased production of light 
hydrocarbon gases. There were no affect on produced water 
yield with increasing temperatures.  

Regardless of straw moisture contents, the maximum liquid 
organics yield occurred around 525 °C to 550 °C with the 
yield ranging from 45 to 53 wt.% (Fig. 5). The yields of liquid 
organics were comparable for all straw moisture levels at each 
reactor temperatures. The yields of reaction water and 
pyrolysis gas also were not affected by the moisture content of 
the feedstock. 

Overall, the change in straw moisture content has no 
significant effect on the distribution of pyrolysis product 
yields except for char. 

The water content in bio-oil increases with increasing of 
straw moisture content. The water content in dry straw oil was 
19-22 wt.%, 24-32 wt.% for as received straw oil and 33-44 
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wt.% for wet straw oil. It can be concluded that the water in 
bio-oil mostly originates from the original moisture in 
feedstock. The high water content in bio-oil may cause a phase 
separation and lowers the heating value of the oil. The 
presence of water in bio-oil with higher amount also limits its 
utilization as a fuel, especially in combustion, as it reduces the 
combustion rates, delay the ignition and lower the adiabatic 
flame temperatures during combustion. Therefore it is an 
advantage to use a relatively dry feedstock in order to have a 
better quality of the bio-oil. 
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