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Abstract—This paper deals with the whirl flutter of the turboprop 

aircraft structures. It is focused on the influence of the blade lift span-
wise distribution on the whirl flutter stability. Firstly it gives the 
overall theoretical background of the whirl flutter phenomenon. After 
that the propeller blade forces solution and the options of the blade 
lift modeling are described. The problem is demonstrated on the 
example of a twin turboprop aircraft structure. There are evaluated 
the influences with respect to the propeller aerodynamic derivatives 
and finally the influences to the whirl flutter speed and the whirl 
flutter margin respectively. 
 

Keywords—Aeroelasticity, flutter, propeller blade force, whirl 
flutter. 

I. INTRODUCTION 
IRCRAFT structures are required to have a reliability 
certificate including the flutter stability. Flutter is a 

dynamic aeroelastic phenomenon occurring due to the 
interaction of unsteady aerodynamic, inertial and elastic forces 
emerging during the relative movement of the air and a 
flexible aircraft. Turboprop aircraft are required to be certified 
also considering the whirl flutter. The whirl flutter (also called 
gyroscopic flutter) that was discovered by Taylor and Browne 
[1] is the specific case of the flutter that includes additional 
dynamic and aerodynamic influences of the engine rotating 
parts. Rotating parts like a propeller or a gas turbine engine 
rotor increase the number of degrees of freedom and cause 
additional forces and moments. Moreover rotating propeller 
causes a complicated flow field and interference effects 
between wing, nacelle and propeller. The essential fact is an 
unsymmetric distribution of forces on a transversely vibrating 
propeller. Whirl flutter may cause a propeller mounting 
unstable vibrations, even a failure of an engine, nacelle or 
whole wing. It has been the cause of a number of accidents.  

II.  THEORETICAL BACKGROUND 
The fundamental solution [2] is derived for the system with 

2 degrees of freedom. Engine system flexible mounting can be 
substituted by the system of two rotational springs (stiffness 
KΨ, KΘ) as illustrated in Fig. 1. Propeller is considered as 
rigid, rotating with angular velocity Ω. System is exposed to 
the airflow of velocity V∞.  

Neglecting the propeller rotation and the aerodynamic 
forces, the two independent mode shapes will emerge with 
angular frequencies ωΨ and ωΘ. Considering the propeller 
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rotation, the primary system motion changes to the 
characteristic gyroscopic motion. The gyroscopic effect makes 
two independent mode shapes merge to whirl motion. The 
propeller axis shows an elliptical movement. The orientation 
of the propeller axis movement is backward relative to the 
propeller rotation for the mode with lower frequency 
(backward whirl mode) and forward relatively to the propeller 
rotation for the mode with higher frequency (forward whirl 
mode). The mode shapes of gyroscopic modes are complex, 
since independent yaw and pitch modes have a phase shift 90°. 

 

 
Fig. 1 Gyroscopic system with propeller 

 
The described gyroscopic mode shapes cause harmonic 

changes of propeller blades angles of attack. They give rise to 
unsteady aerodynamic forces, which may under the specific 
conditions induce a whirl flutter. Possible states of the 
gyroscopic system from the flutter stability point of view for 
backward mode are explained in Fig. 2. Provided that the air 
velocity is lower than critical value (V∞ < VFL), the system is 
stable and the motion is damped. If the airspeed exceeds the 
critical value (V∞ > VFL), the system becomes unstable and 
motion is diverging. The state of the neutral stability 
(V∞ = VFL) with no total damping is called critical flutter state 
and VFL is called critical flutter speed. 

The basic problem of the analytical solution consists in the 
determination of the aerodynamic forces caused by the 
gyroscopic motion for the specific propeller blades. The 
equations of motion were set up for the system described in 
Fig. 1. The kinematical scheme including gyroscopic effects 
[3] is shown in Fig. 3. The independent generalized 
coordinates are three angles (φ, Θ, Ψ). We assume the 
propeller angular velocity constant (φ = Ω t), mass distribution 
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symmetric around X-axis and mass moments of inertia JZ ≠ JY.
 

 
(a)                                                                                                (b) 

Fig. 2 Stable (a) and unstable (b) state of gyroscopic vibrations for backward flutter mode 
 
Considering the small angles (࢔࢏࢙ሺ࢞ሻ ൎ ሻ࢞ሺ࢙࢕ࢉ ; 0 ൎ 1) 

the equations of motion become:  
 

Θ Θ
Y X Θ Y,P Z

Ψ Ψ
Z X Ψ Z,P Y

K γJ Θ Θ J ΩΨ K Θ M a.P
ω

K γJ Ψ Ψ J ΩΘ K Ψ M a.P
ω

+ + + = −

+ − + = +

            (1)  

                                   
We formulate the propeller aerodynamic forces by means of 

the aerodynamic derivatives as described in Section III and 
make the simplification for the harmonic motion, then the 
final whirl flutter matrix equation become: 

 

[ ] [ ] [ ] [ ]( )) { }
2

2 A AP
P P P

ΘDω M jω D G q F D  K q F D K   0
V Ψ∞ ∞

∞

⎛ ⎡ ⎤⎛ ⎞
⎡ ⎤ ⎡ ⎤− + + + + + =⎜ ⎜ ⎟ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎝ ⎠ ⎣ ⎦⎝ (2)  

 
The limit state emerges for the specific combination of 

parameters V∞ and Ω, when the angular velocity ω is real. 
Increasing the propeller advance ratio (V∞ / (ΩR)) requires an 
increase of the necessary stiffnesses; KΘ, KΨ. Also influences 

of the structural damping and the distance propeller – mode 
shape node are significant. 

The whirl flutter appears at the gyroscopic rotational 
vibrations, the flutter frequency is the same as the frequency 
of the backward gyroscopic mode. The critical state may be 
reached either due to increasing the air velocity or the 
propeller revolutions. Structural damping is a significant 
stabilization factor. On the contrary, the propeller thrust 
influence is barely noticeable. The most critical state is 
KΘ = KΨ, it means ωΘ = ωΨ when the interaction of both 
independent motions is maximal. A special case of (2) for 
ω = 0 is the gyroscopic static divergence. 

III. PROPELLER AERODYNAMIC FORCES 
The fundamental solution of the propeller aerodynamic 

forces (right hand side of (1)) employing the Strip Theory [4], 
[5] for the rigid propeller blades was derived by Ribner [6], 
[7]. Later on the modified solution of Houbolt and Reed [8] 
became available as well. The propeller aerodynamic forces 
are expressed as: 

 
Fig. 3 Kinematical scheme of the gyroscopic system 
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where ρ is the air density and R is a propeller diameter. The 
effective angles are basically expressed as the quasi-steady 
values: 
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the cij terms represent the aerodynamic derivatives defined as: 
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(5) 

 
Note that we neglected the aerodynamic inertia terms in (5) 

as: 
 

ΘΘ ≈∗ ; ΨΨ ≈∗                           (6) 
 
further simplification comes with respect to the symmetry as: 
 

czΨ  = cyΘ ; cmΨ = -cnΘ ; cmq = cnr ; czr = cyq ; 

 
czΘ = -cyΨ ; cnΨ = cmΘ ; cmr = -cnq ; cyr = -czq               (7) 

 
and finally neglecting those ones with low values we can 
consider: 

 
cmr = -cnq = 0 ; cyr = -czq = 0                           (8) 

 
In fact we have 6 independent values of aerodynamic 

derivatives. The derivatives are expressed by means of the 
propeller blade integrals that integrate the aerodynamic forces 
in the blade spanwise direction. The formulation of the 
integrals depends on the propeller geometric and aerodynamic 
characteristics. The basic formulation is given by Houbolt and 
Reed in [8] as: 
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(9)

 

                     

                          
This formulation is limited to the 4-blade propeller and 

theoretical blade lift curve slope (a0 = 2π). It includes only 3 
integrals accounting for the in-phase aerodynamic effects. It 
neglects the aerodynamic lift lag effects as well as the further 
important aerodynamic effects. 

The extended formulation of the blade integrals is presented 
by Rodden and Rose [9]. It includes the aerodynamic lift lag 
effect by means of the Theodorsen function as proposed in [8]. 
The Theodorsen function terms are calculated by means of the 
Bessel functions first and second kind, zero and first order as: 

 
( ) ( )

( ) ( )

( ) ( )2
01

2
01

0101

2
01

2
01

011011

)(

)(

BjByByBj
BjBjByBy

kG

BjByByBj
BjByByByBjBj

kF

−++

+
−=

−++

−++
=

                   

(10) 

 
where the blade section local reduced frequency kp is 
expressed as:  

 

22P
ημ2R

ck
+

=                                  (11) 

 
where dimensionless propeller advance ratio is expressed as: 
 

R
V
Ω

= ∞μ                                         (12) 

 
the dimensionless propeller radius is expressed as: 
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R
r

=η                                              (13) 

 
and finally c and r are the blade local section chord and radius 
respectively. 

 The formulation of [9] also includes the correction to the 
compressibility by means of the Prandtl - Glauert correction 
considering the local blade section resultant Mach number Mr 

coming from the blade resultant velocity 222 rV Ω+∞ .  
The Prandtl - Glauert correction factor is: 
 

21
1

rM−                                            

(14) 

 
Other correction factor accounting for the compressible 

flow blade aspect - ratio effect is expressed as: 
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(15) 

 
Note that these corrections are included into the final blade 

integrals in the more appropriate form using the forward flight 
Mach number (M). 

In the practical applications the integration range includes 
only the thrusting part of the propeller; therefore, the lower 
limit of the integration is shifted to the propeller boss radius r0 
which is in the dimensionless form expressed as: 

 

R
r0=0η

                                             
(16) 

 
 In this case the blade aspect ratio is expressed as: 
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where cr is the blade reference chord.  

The final correction of (Nb/4) is applied to account for the 
number of blades Nb. Note that the solution is valid for the 
propellers of 3 or more blades that are considered as 
axisymmetric. 

Applying the described corrections the number of the blade 
integrals is doubled comparing to (9). The I(1-3) are "in-phase" 
integrals including the F(k) component of the Theodorsen 
function whereas J(1-3) are "out-of-phase" integrals including 
the G(k) component. The corrected blade integrals are 
expressed as: 
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and the aerodynamic derivatives are expressed as: 
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(19) 

 
Equation (18) includes also the correction for the propeller 

lift curve slope (a0) that is the parameter the paper is focused 
on. The lift curve slope that is defined as the derivative of the 
propeller force with respect to the effective angle of attack 
may be included as: 

A. Profile Theoretical Value: a0 = 2π  
This is the basic option that is used in (9). It is used 

provided no information regarding the propeller aerodynamics 
is available. 

B. Effective Value: a0 = a0eff 
This is the option that is used in (19) by means of the factor 

(a0 /2π). The effective value is the spanwise constant value 
that may be extracted from the spanwise lift slope distribution. 
In the most cases the a0eff < 2π therefore it ordinarily generates 
lower blade forces with the stabilizing outcome comparing to 
the former option.   
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C. Real Spanwise Distribution: a0 = a0 (η) 
This option is the most precise since it accounts for the real 

propeller force distribution. Ordinarily the root part of the 
blade generates quite low lift, the maximal lift is generated at 
about 3/4 of the blade span and again the tip region generates 
lower lift. The lift curve slope distribution may be variable 
considering specific types of propellers. Optionally the typical 
distributions which are presented e.g. in [10] may be 
employed. 

 Considering the spanwise variable lift curve slope the a0 
moves under the integrand and the propeller blade integrals of 
(18) change into the form of: 
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(20) 
 
Note that the further correction of the blade lift slope is the 

cut-off value in the transonic flow that is applied to avoid the 
Mach number correction for the blade tip supersonic speed 
(e.g. condition of the propeller overspeed etc.). With regard to 
the fact that this correction can be applied regardless the lift 
curve slope model it is not included to the presented 
evaluation. 

The described options, in particular the two latter ones are 
compared with respect to the aerodynamic derivatives and the 
flutter stability in the next section.  

IV. APPLICATION EXAMPLE 
The evaluation is performed on the structure of the EV-55M 

aircraft that is ordinary twin tractor turboprop for 9-13 
passengers with the total length of 14.35m, the wingspan of 
16.10m and the maximal take-off weight of 4600kg. It is 
powered by PT6A-21 turboprop engines with Avia AV-844 
propellers. 

 
Fig. 4 Aerodynamic derivative czΘ - blade lift slope: a0eff ; a0 (η) 
 

 

Fig. 5 Aerodynamic derivative cmΘ - blade lift slope: a0eff ; a0 (η) 
 
Firstly the evaluation of the aerodynamic derivatives is 

provided. The subjected AV-844 is 4-blade constant speed 
propeller with the diameter of R = 1.041m. The blade lift 
curve slope spanwise distribution as well as the geometry of 
the blade cannot be reproduced here. The effective value 
extracted by means of the RMS method of a0eff = 6.2478 is 
slightly lower comparing to the profile theoretical value of 2π. 
Therefore the variance of derivatives considering 2π and a0eff 
is barely noticeable. Figs. 4-6 show the examples of values of 
aerodynamic derivatives depend on the flow velocity 
considering a0eff and a0 (η). 

 

‐0,350

‐0,300

‐0,250

‐0,200

‐0,150

‐0,100

‐0,050

0,000

0 50 100 150 200

de
ri
va
ti
ve

velocity  V  [m/s]

eff

real

AV‐844 cztheta

a0:

‐cypsi

0,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

0 50 100 150 200

de
ri
va
ti
ve

velocity  V  [m/s]

eff

real AV‐844

cmtheta

cnpsi

a0:



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:4, 2014

732

 

 

 
Fig. 6 Aerodynamic derivative cyΘ - blade lift slope: a0eff ; a0 (η) 
 
It is obvious from Figs. 4-6 that the derivatives considering 

the real blade lift slope distribution are lower comparing to 
those ones using the effective value. This fact hold true also 
for the other ones which are not shown here.  

The final evaluation of the whirl flutter speed was 
performed using the NASTRAN program system supported by 
the in-house PROPFM software code. The detailed description 
of the analytical procedure by means of both standard and 
optimization solutions is provided e.g. in [11] and is not 
reproduced here as well as the detailed description of the 
EV-55M aircraft aeroelastic analyses that can be found e.g. in 
[12]. The structural model of the EV-55M is shown in Fig. 7 
whereas the aerodynamic mesh is shown in Fig. 8. 

 

 
Fig. 7 EV-55M aircraft structural FE model 

 
Fig. 8 EV-55M aircraft aerodynamic model 

 

 
Fig. 9 V-g-f diagram - EV-55M aircraft - engine mount stiffness 

reduced by 50% - blade lift slope: a0eff ; a0 (η) 
 
The selected mass configuration of the structure includes 

50% of fuel, 2 passengers in the 3rd row and statically 
balanced controls. For the standard analysis the effective 
stiffnesses of the engine mount in both vertical and lateral 
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directions were reduced by 50% in order to reach the critical 
state within the reasonable velocity range. The resulting V-g-f 
(velocity - damping - frequency) diagram is presented in Fig. 
9. The solid lines with markers show the analysis using the 
effective value of the propeller lift curve slope whereas the 
dotted lines show the analysis using the real distribution of the 
lift curve slope.  

There is the backward whirl flutter indicated on the mode 
#2 that is the engine vertical vibrations mode. As expected 
there is the visible difference in the V-g curve of the modes #2 
and #4 which are the engine vertical and lateral vibration 
modes, otherwise the differences are very small. Considering 
the effective value of the lift curve slope the flutter speed is 
VFL = 166.6 [m.s-1] whereas considering the real lift curve 
slope distribution the flutter speed become VFL = 182.0 
[m.s-1]. It represents the increase in the flutter speed by 9.2%. 
The flutter frequency was fFL = 5.8 [Hz], the difference 
between both cases was barely noticeable. 

Further explanation of the blade lift slope influence on the 
whirl flutter characteristics is provided in Fig. 10. It shows the 
stability margins for the specific flutter velocity that together 
with the corresponding altitude represents the certification 
point according the (V - H) envelope. The margins which are 
calculated using the optimization approach of the whirl flutter 
analysis [11] define the critical values of the structural 
parameters (e.g., vertical and lateral engine vibration modes 
frequencies) in order to reach the required flutter speed. Again 
the real distribution of the lift curve slope gives the lower 
critical frequencies and thus higher reserve in terms of the 
whirl flutter stability with respect to the nominal state. The 
differences between both margins are ranging within 
(5.5-7.1)%. On the other side it should be noted that the 
effective value of the lift curve slope represents the 
conservative estimation. 

 

 
Fig. 10 Whirl flutter stability margins - blade lift slope: a0eff ; a0 (η) 

V. CONCLUSION 
This paper deals with evaluation of the influence of the 

propeller blade lift spanwise distribution to the whirl flutter. 

Evaluation includes the effective (spanwise constant) value of 
the blade lift curve slope and more accurate real (spanwise 
variable) distribution of the blade lift slope. The application 
examples include the calculations of the propeller 
aerodynamic derivatives and the whirl flutter calculations of 
the reference twin turboprop aircraft structure. The usage of 
the real lift curve slope distribution causes the decrease of the 
aerodynamic derivatives. Comparing to the usage of the 
effective value the derivatives may vary quite significantly. 
Decreasing of the aerodynamic derivatives makes the increase 
of the flutter speed or decrease the critical values of the 
structural parameters (engine attachment stiffness, natural 
frequencies of engine vibration modes). The example of the 
reference aircraft shows the increase of the whirl flutter speed 
by 9.2% and decrease of the necessary frequencies of the 
engine vibration modes by (5.5-7.1)%.  

To conclude the usage of the real propeller blade lift curve 
slope distribution increases the accuracy of the results and 
raises the rate of reserve in terms of the flutter stability. It may 
be useful, e.g., considering the failure states that are required 
to be analyzed by the regulation standards. The usage of the 
effective value gives the conservative results, therefore, it 
would be applicable as well. However, with regard to the fact, 
that the effective value is extracted from the spanwise 
distribution the usage lose the reason.  
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