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Abstract—Recent research in neural networks science and 

neuroscience for modeling complex time series data and statistical 
learning has focused mostly on learning from high input space and 
signals. Local linear models are a strong choice for modeling local 
nonlinearity in data series.  Locally weighted projection regression is 
a flexible and powerful algorithm for nonlinear approximation in 
high dimensional signal spaces. In this paper, different learning 
scenario of one and two dimensional data series with different 
distributions are investigated for simulation and further noise is 
inputted to data distribution for making different disordered 
distribution in time series data and for evaluation of algorithm in 
locality prediction of nonlinearity. Then, the performance of this 
algorithm is simulated and also when the distribution of data is high 
or when the number of data is less the sensitivity of this approach to 
data distribution and influence of important parameter of local 
validity in this algorithm with different data distribution is explained.   
 
Keywords—Local nonlinear estimation, LWPR algorithm, 

Online training method.  

I. INTRODUCTION 
ESPITE powerful and computationally fast methods in 
statistical learning or in computational methods in 

neuroscience, nonlinear function approximation in high-
dimensional data with disordered distribution remains an 
ongoing active research. Many dynamical systems are 
available in engineering application or other related science 
such as neuroscience or bio informatics that system has many 
states which evolve irregular in space and time and for 
modeling these systems we need high dimensional data But in 
other situation some dynamical systems need online modeling 
of dynamic processes such as modeling for learning control, 
particularly in the field of high-dimensional movement 
systems or in movement primitives science [1], [2]. 
Nonparametric regression modeling, such as LWPR has more 
flexible outline for approximating unknown nonlinearities. 
One of the disadvantages of local models is that they are 
discontinuous. A small variation in the input vector can 
change the nearest trajectory of data series. This problem can 
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be improved by giving the furthest data trajectories less impact 
on the local model. Local linear models can be constructed 
using weighted linear regression where the furthest trajectories 
accept the lowest weights. 

For example two important examples of using this 
algorithm in recent publication are considered here. First, in 
sensory motor or motor control of robotics, this approach is 
very usable. In this system the purpose of learning algorithm is 
the processing the inverse dynamic of robots while produced 
motion has stable and robust computational features. Another 
important example is online learning and especially control of 
autonomous airplane that at this dynamical system we need to 
develop stable adaptive control law and also it has a fast time 
evolution dynamics. Difficulty of this modeling is in 
formulization and programming of controller because in step 
of the decomposition of system to subsystems we face to 
important challenge that many subsystems have unknown 
parameters that vary during the operational points of system 
and variation of this parameters is high and by using this 
method we can extract the main and important features of this 
parameters [3]-[5]. Consequently, decomposition of system to 
subsystems must be fast and computational accurate for 
achieving function approximation. Also LWPR methods are 
very useful when there is limited knowledge about the model 
complexity in duration of modeling. 

Generally, there are two different processes for learning 
method that in the first method we fit nonlinear functions 
globally, in other words by expansions of input to predefined 
function and next linear combination of the expanded inputs. 
In the second method, we fit nonlinear functions locally in 
state space, usually by using spatially simple low order 
functions and then automatically adjusting the number of local 
models [6], [7].  

The current approaches in statistical learning have 
concentrated on the first method. Gaussian process regression 
or locally Gaussian function approximation [8], [9] are the 
exemplary cases. These approaches in spite of their 
convergence features are not suitable for online learning in 
high space dimensional data. The first disadvantage of these 
approaches is that they require a predefined determination for 
demonstration. The second disadvantage is that with adding 
data in its database their accurate and convergence is not 
ensured. For example, Gaussian processes regression are very 
expensive in time for real time learning because it need to 
program the complete joint distribution of data and next with 
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adding noise in input data the accuracy of the algorithm is 
affected adversely [10], [11].  

In this paper, the overall formulation of method is presented 
and then different data series and performance of algorithm for 
facing in distribution change is explained. When the data 
series have low perturbed distribution data, it should be 
checked that this method is applicable or not. Finally, the 
influence of local validity parameter in modeling of our data is 
explained. 

II. FORMULIZATION AND ITERATION OF THE PROPOSED 
METHOD  

Real time online learning has a three major constraint 
.firstly the learning and prediction should be very fast because 
learning needs to take place at a frequency of 20-200 HZ and 
prediction in range of 200HZ up to 5KHZ. Secondly the 
learning system needs to be capable at dealing with high 
dimensional and irrelevant data and thirdly the data arrives as 
a continuous stream, thus, the model has to be continuously 
adapted to new training examples over time. 

In this algorithm, we use projection regression technique 
that first decomposes high dimensional data. The major 
difficulty of this method lies in the selection of efficient 
projections and number of selected projections. The first 
important assumption is that data is distributed locally perfect. 
The learning problems considered here assume the standard 
regression problem that has form as (1): 

 
Y=f(x)+                                         (1) 

 
where x is n-dimensional input space and y is scalar variable. 
In this method, when the data space is low, even low order 
polynomials can be employed in order to model this local data. 
For nonlinear function approximation, the main concept of 
our learning system, in locally weighted projection regression 
(LWPR), is to find approximations by means of effective 
linear models. We should find number of local models K , the 
parameters βk, the region of validity, called receptive field 
(RF), parameterized as a distance metric Dk and is evident in 
(2): 

 
                    (2) 

 
So with given this model each linear model calculates the 

estimation of output variable in local domain of data then the 
total output of the learning system is the normalized weighted 
mean of all K linear local models [12]-[14]. 

At this algorithm the centers ck of the local model remain 
fixed during the computation [10]. Also, it should be said that 
iterative strategy of the proposed approach is mentioned in 
[10], [11]. The important contribution of this article is related 
to the ability of method for information processing in different 
time series data. Another main point is that if all the input 
variables are statistically independent and have equal variance 
then the projection direction will be computed easier. 
Schematic iteration rules are plotted in Fig. 1, from [10], that 

automatically allocate new locally linear models as needed. An 
outline of the final LWPR algorithm and parameters of 
algorithm are shown in Tables I and II. 

 
TABLE I 

LEGEND OF INDEXES AND SYMBOLS USED FOR LWPR [10] 
Symbol Legend 
M                            Number of training data 
N  (dim. of x)         Input dimensionality 
k = (1 : K )              Number of local models            
r = (1 : R)               Number of local projections 
{xi , yi }                  Training data 
pr             Regressed input space    
X, Z                        representations of input and projected data                      
W                Activation of data (x, y) one local model centered at c 
W                            Weight matrix W ≡ diag{w1 ,..., wM} 
Wn                          Sum of weights w seen by the local model 
Βri              component of slope of the local linear model 

                           Sufficient statistics for covergence  
 

TABLE II 
COMPLETE LWPR ALGORITHM [10] 

• Initialize the LWPR with no receptive field (RF) 
• For every new training sample (x,y): 
– For k = 1 to K (number of receptive fields): 
∗ Calculate the activation 
∗ Update projections and regression and distance metric  
∗ Check if number of projections needs to be increased  
If no RF was activated by more than wgen ; 
∗ Create a new RF with R = 2, c = x, D = Ddef 

 

 
Fig. 1 Schematic diagram of algorithm for [10] 

III. DATA CHARACTERISTICS OF LOCAL MODELING OF TIME 
SERIES 

The following sections provide an evaluation of our 
proposed LWPR learning algorithm over one dimensional 
noisy time Series. For practical reasons it is assumed that the 
time series is generated by a nonlinear dynamic system 
governed that are evident in (3) and (4): 

 
                                             (3) 

=g (                                             (4) 
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where  and g (  are nonlinear functions with 
continuous derivatives. Six artificial data sets are used to 
illustrate the local estimation of nonlinearity. These data series 
are plotted in Figs. 2-4 with different characteristics.  
 

 
  Fig. 2 Artificial data series with little variance 

 

 
  Fig. 3 Artificial data series with more variance 

 

 
Fig. 4 Artificial data series with chaotic behavior 

 
The decomposition of data results from the main hypothesis 

those nearby input points are likely to have similar weight 
values. 

IV. PERFORMANCE OF LWPR METHOD IN LOCALLY 
ESTIMATION WITH PERTURBED DATA  

Generally, noise-free time series created by the dynamic 
system in (3) will encompass periodic oscillations solution. 
Region of validity should be chosen to cover several of these 
oscillations in DS. Thus, points that related the same local 
region are informative for algorithm for this local region. In 

algorithm after calculating the proximity between the new data 
point and all available centers, the data point will be involved 
to the nearest local model. This threshold for keeping data in 
local region is so important for both one and two dimensional 
data series. Firstly, the estimation of data for Fig. 2 is plotted 
in Fig. 5. In this simulation it is evident that at first section of 
data the estimation has poor performance. Estimation in this 
local region of data is plotted more clearly in Fig. 11 and 
estimation in last section of data is plotted in Fig. 12. In last 
region the estimation of data has better performance .Optimal 
value of region of validity is generally small for noise-free 
time series. However, short time series with more noise data 
are often too short to estimate because the components of xt 
closest in time to the estimation are given exponentially more 
weight like results of Fig. 11. However, for local models 
estimation algorithm can use the same k nearest data points as 
the basis for all estimation. The region of nearest data points 
that is considered in algorithm is plotted in Fig. 6. This figure 
shows that correlation between data points has important 
influence in estimation of nearest point and region of validity 
.So data series is perturbed with more noise and then 
estimation of local nonlinearity is plotted in Fig. 7. It is 
evident from this figure that at first section of data because 
data has more noise with uncorrelated data this estimation has 
poor performance and vice versa for last section of data. 

When dynamics of system has irregular evolution spatially 
the problem of nearest points is important and also 
determining of parameter of region of validity and distance 
metric is depend to the sampling rate of data. It is especially 
suitable for chaotic systems where neighboring states are 
known to deviate exponentially with time. Estimation of 
chaotic data is plotted in Fig. 8 and also when more noise is 
inputted to local regions, the estimation is plotted in Fig. 9 and 
finally the region of nearest data points that is considered in 
algorithm is plotted in Fig. 10. Number of local models will 
increase if previously unknown sections of the state space are 
visited but also correlation between data point has influence to 
this locality estimation. Model accuracy is sensitive to the 
number of neighboring data points which makes this 
parameter a good applicant for locally and globally 
optimization. 

 

 
Fig. 5 Estimation of data series with increasing the parameter of 

region of validity 
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Fig. 6 Region of nearest data points that is considered in algorithm 

 

 
Fig. 7 Estimation of data series with increasing variance level 

 

 
Fig. 8 Estimation of data series with chaotic behavior 

 

 
Fig. 9 Estimation of data series with chaotic behavior by increasing 

variance level 

 
Fig.  10 Region of nearest data points that is considered in algorithm 

 

 
Fig. 11 Estimation of data in uncorrelated and noisy section of data  

 

 
Fig. 12 Estimation of data in correlated but noisy section of data 

V. EMPIRICAL EVALUATION IN TWO DIMENSIONAL DATA 
For many nonlinear modeling like neural networks 

obtaining adaptive parameters typically needs too much 
computation over structural parameters. In contrast, LWPR 
method can be modeled and evaluated efficiently over several 
of the model parameters which make the choice of the 
parameters to be estimated especially in perturbed data. The 
method for estimation with decomposition of data is plotted 
Fig. 13. 
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Fig. 13 Artificial data series with chaotic behavior 

 

 
Fig. 14 Distribution of noisy data samples (n=2500) 

 

 
Fig. 15 The fitted and approximation function for our data 

 
The following sections provide an evaluation of our proposed 

LWPR learning algorithm over a range of artificial and real-
world data sets. Firstly, we evaluate this algorithm with very 
large data which is affected by noise and it have n=2500 data 
samples that this distribution is plotted in Fig. 14. Next, the 
true function approximation of this algorithm is shown in Fig. 
15. Then, the decomposition of data with local model is 

plotted in Fig. 16. The runtime of this algorithm is not so 
much and is about 1.3 seconds that this shows the ability of 
this method for higher input dimension and for better 
computational source [15]. 

 

 
Fig. 16 The decomposition of input space to local model 

 

 
Fig. 17 Distribution of noisy data samples (n=200) 

 

 
Fig. 18 The fitted and approximation function for our data 
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Fig. 19 Distribution of noisy data samples (n=100) 

 

 
Fig. 20 The fitted and approximation function for our data 

 
 

 
Fig. 21 Distribution of noisy data samples (n=100) 

 
In the next simulation we use n=200 noisy dataset that is 

plotted in Fig. 17 and in another time series with keeping this 
distribution but with n=100 noisy data is designed that is 
plotted in Fig. 19. Fitted and approximation function for our 
data with first data is plotted in Fig. 18 and for second data is 
plotted in Fig. 20. It is evident from figures and also important 
contribution of this paper is that with reducing the number of 
data set while not changing the distribution of data, the fitted 
approximation is very sensitive to lower point data or 

disordered point in time series section that represent noise or 
imperfect measurement. For example, in Fig. 20 it is evident 
that this approximation is changed with some noisy prevalent 
data. 

 

 
Fig. 22 The decomposition of input space to local model 

 

 
Fig. 23 The fitted and approximation function for our data 

 

 
Fig. 24 The fitted and approximation function for our data with change 

in local validity 
 

In this section we evaluate another important parameter of 
this method. These are the βk or the region of validity and also 
distance metric Dk. This parameters effect on searching the 
local linear for projection of data and the optimal value of this 
number in modeling is not observable and deterministic. That 
in two experimental data we showed this effect. Firstly, we 
examined the data sample with n=100 with two different 
distributions that are plotted in Figs. 21 and 26, then in each 
simulation different quantity for the local validity parameter in 
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modeling is used. For example, the decomposition of input 
space to local model with two different local validities is 
plotted in Figs. 22 and 25. For other data distribution, this 
examination is plotted in Figs. 27 and 30. 

 

 

Fig. 25 The decomposition of input space to local model 
 

 
Fig. 26 Distribution of noisy data samples (n=100) 

 
Finally approximation function on our data is plotted in 

Figs. 22 and 24 and then for second simulation is plotted in 
Figs. 28 and 29. 

 

 
Fig. 27 The decomposition of input space to local model 

 

 
Fig. 28 The fitted and approximation function for our data 

 

 
Fig. 29 The fitted and approximation function for our data with change 

in local validity 
 

 
Fig. 30 The decomposition of input space to local model 
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Important change of our function is evident in simulation 

results so for modeling with this method we should think to 
this parameter very accurately for choosing their value and 
also it should be said here in some articles some notification 
for choosing this value is presented. Finally, the variation of 
fitted function with lower value of this parameter is high but in 
some situation we need choose the lower value for lower 
computational time and tradeoff between these factors for 
optimal approximation is important and necessary in this 
method.  

VI. CONCLUSION 
Nonlinear regression with spatially localized models 

remains one of the most data-efficient and computationally 
efficient methods for incremental learning with automatic 
determination of the model complexity. In this paper, the 
important notice of parameters in these modeling was 
explained with different data-sets. Furthermore, accuracy for 
choosing the parameter and limitation of the method was 
explained with simulation results. 
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