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Influence of Noise on the Inference of Dynamic
Bayesian Networks from Short Time Series
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Abstract— In this paper we investigate the influence of external
noise on the inference of network structures. The purpose of our
simulations is to gain insights in the experimental design of mi-
croarray experiments to infer, e.g., transcription regulatory networks
from microarray experiments. Here external noise means, that the
dynamics of the system under investigation, e.g., temporal changes of
mRNA concentration, is affected by measurement errors. Additionally
to external noise another problem occurs in the context of microarray
experiments. Practically, it is not possible to monitor the mRNA
concentration over an arbitrary long time period as demanded by the
statistical methods used to learn the underlying network structure. For
this reason, we use only short time series to make our simulations
more biologically plausible.

Keywords— Dynamic Bayesian networks, structure learning, gene
networks, Markov chain Monte Carlo, microarray data.

I. INTRODUCTION

DYNAMIC Bayesian networks are a special example of
graphical models that combine properties from graph and

probability theory [10]. Causally speaking, graphical models
allow the visualization of multivariate probability distributions
where nodes in a graph represent random variables and
connections between nodes indicate dependencies between
the random variables [1]. In recent years, Bayesian networks
and dynamic Bayesian networks, which are an extention of
Bayesian networks in the respect that the underlying directed
graph can contain cycles, are used to analyze gene expres-
sion data from microarray experiments [4], [13], [6], [8].
Especially, dynamic Bayesian networks seems to be a good
choice for this task, because gene networks, e.g., transcription
regulatory networks, contain positive and negative feedback
loops as LEE et al. demonstrated for yeast [11].

The major objective of this paper is to investigate the
influence of external noise on the inference of dynamic
Bayesian networks from short time series. This is important,
because external noise can be seen as measurement error in
microarray experiments which is inevitably present. Hence,
we do not deal with principle questions about the learnability
of a probabilistic model under ideal conditions, but tackle
the practical question if a dynamic Bayesian network is
appropriate to be applied in the context of biological data from
microarray experiments. To obtain an objective performance
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measure we generate a short time series by a model that
incorporates important features of the biological system. This
allows us to evaluate the performance objectively, because the
solution, the network structure, is known. To our knowledge,
our results are the first in this direction to study this influence
systematically. Existing studies in this context investigated,
e.g., the appropriate level of description to simulate gene
expression data, the influence of the number of time points, the
number of categories and the interval length between samples
[2], [17], [18], [8], [16].

This paper is organized in the following way: In the next
section we present the model we use to generate biological
plausible data mimicing the process of, e.g., transcription
regulation. In II-C we describe the mathematical framework
of dynamical Bayesian networks we use to infer the network
structure. In section III we present our results and in IV we
finish the article with a discussion and conclusions.

II. MODEL

A. Boolean network with external noise

We generate a binary time series X t
i ∈ {0, 1} for all nodes

i ∈ N from a Boolean network consisting of N = 12 nodes.
The structure of this network is shown in Fig. 1 [7]. The
Boolean functions fj defining the dynamics in this network
are deterministic, however, the nodes 2 and 7 receive a random
input. That means, the values of these nodes X t

2 and Xt
7 are at

each time step t randomly chosen from {0, 1}. This prevents
the systems dynamics eventually to reach a fixed point after
a certain number of time steps. The three different logical
functions fj used are a or-gate, a not-gate and a one-gate
which leaves the signal unchanged and just copies the value
of the input gene to the output gene. The or-gate is used for all
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Fig. 1. Network topology of our synthetic network. Arrows represent an
excitation between genes and circles an inhibition.
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Fig. 2. Time series of expression values for six genes generated with the
network structure shown in Fig. 1.

nodes which receive two inputs from other genes. The genes
which are regulated by a not-gate are depicted in Fig. 1 by a
circle and the genes which are regulated by a one-gate by an
arrow. Formally, the dynamics of the system is given by

Xt+1
i = f i

j(Par(Xi), t) (1)

for all i ∈ {1, . . . , N}. That means the value of gene i at time
step t+1 is determined by the j-th boolean function which has
as inputs the parents Par(Xi) of gene i with their values at
time step t. Additionally to the dynamics given by the Boolean
functions we introduce external noise in the system. We model
the influence of external noise on the systems dynamics by
flipping the value of a gene Xi at each time step with a
probability pε. This effect is called external noise, because
we include by this measurement errors inevitably present in
any experiment.

In Fig. 2 we show a resulting time series of length T = 100
from the dynamics defined above for 6 genes. In this case the
external noise was pε = 0. One can see that the activity of
gene 3 and gene 8 are the same up to a delay of 2 time
steps and that gene 1 follows inversely the activity of gene
8. The low activity of gene 12 is a direct consequence of the
inhibition of gene 11. To see the influence of the external noise
on the activity of the genes we show in Fig. 3 an example for
pε = 0.3. In this case the activity frequency of gene 12 is
increased considerably.

B. Stochastic Boolean network with external noise

The second dynamics we study is a network consisting
of stochastic Boolean functions. For example, a stochastic
or-gate is given by the assignment in table I. The means,
every Boolean function is substituted by a conditional prob-
ability. For reasons of simplicity we assume always that the
value of the deterministic gate is assumed with probability
p(y|Par(y)) = p1. By this convention we have only one free
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Fig. 3. Time series of expression values for six genes generated with the
network structure shown in Fig. 1. The output of a gene was flipped with
probability pη = 0.3.

TABLE I

STOCHASTIC OR-GATE. THE OUTPUT VALUE y IS GIVEN WITH A CERTAIN

PROBABILITY p(y). THIS PROBABILITY CORRESPONDS TO THE

CONDITIONAL PROBABILITY p(y|x1, x2) GIVEN IN THE TABLE. FOR

SIMPLICITY WE ASSUME THAT THE VALUE OF THE DETERMINISTIC

OR-GATE IS ALWAYS CHOSEN WITH PROBABILITY p1 .

y x1 x2

p(y = 0) = p1 0 0

p(y = 1) = p1 1 0

p(y = 1) = p1 0 1

p(y = 1) = p1 1 1

parameter p1 which controls the stochasticity of all conditional
probability distributions in the network. Also in this case we
introduce external noise in the system by the same mechanism
described in section II-A. For the following simulations we use
p1 = 0.9 and the network topology shown in Fig. 1.

To make the following simulations more realistic we add
to the network 30 genes whose dynamics is randomly and
uniformly drawn from {0, 1}. These genes serve as distractors
for our learning algorithm. Biologically, this corresponds to,
e.g., microarray experiments which include genes that are not
involved in the process under investigation. The problem is,
that it is not known in advance which genes are relevant for a
certain biological process and, hence, they can not be excluded
for the analysis per se. This is another difficulty normally
neglected in the study of dynamic Bayesian networks.

C. Dynamic Bayesian Networks

A Bayesian network M is a graphical model in form of
a directed acyclic graph (DAG) G together with conditional
probability distributions, depending on parameters Θ, for
each node i in the graph that depends only on its parents,
P (ni|PaG(ni)) [15]. This provides a graphical representation
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of the joint probability distribution of N random variables ni

by

P (n1, n2, . . . , nN) =
N∏
i

P (ni|PaG(ni)) (2)

In the context of genetic networks we identify the random
variables ni with (discrete) expression values Xi of genes
and connections between random variables as interactions. The
problem we are facing is to infer the structure of the network
G from given data D, that means we want to maximize the
conditional probability P (G|D).

G∗ = argmax
G

{P (G|D)} (3)

P (G|D) ∝ P (D|G)P (G) (4)

The optimal network structure is denoted by G∗ and the
posterior distribution P (G|D) is given via the Bayes rule in
Eq. 4 up to a normalizing factor. The likelihood P (D|G) is
obtained by integrating over the parameters of the conditional
probabilities Θ by

P (D|G) =
∫

P (D|Θ,G)P (Θ|G)dΘ (5)

It was suggested [8] that the maximum a-posteriori (MAP)
approach Eq. 3 is not the most efficient if the available data are
incomplete. Instead, sampling from the posterior probability
Eq. 4 results in a collection of networks with comparable
quality rather than just in a single network [8]. The problem
with this approach is that sampling from the posterior is
not directly possible because the denominator can only be
calculated if the size of the graph is very small. However,
this can be overcome by applying a Markov chain Monte
Carlo simulation (MCMC) [12]. Here we use the algorithm
of Metropolis-Hastings (MH). This algorithm is based on
local modifications of the old structure Gold leading to a
new structure Gnew . Possible local modifications are to delete,
reverse or add an edge to the graph. If the new structure
is accepted or rejected is decided based on the following
criterion,

paccept = min

{
1,

P (Gnew |D)
P (Gold|D)

T (Gold|Gnew)
T (Gnew|Gold)

}
(6)

The transition probabilities T (G′|G) are given by 1/#G. Here
#G denotes the number of possible structures which can be
obtained by the allowed local modifications (delete, reverse or
add an edge). For more technical details about the algorithms
the reader is referred to HUSMEIER [8].

So far we discussed only Bayesian networks. This class of
graphical models is restricted to acyclic graphs as mentioned
above. However, one characteristic property of genetic net-
works is that they can contain feedback loops. For example in
Fig. 1 the genes 1, 3, 4 and 8 are forming a feedback loop. This
limitation of Bayesian networks can be overcome by using
dynamic Bayesian networks [3]. Dynamic Bayesian networks
are directed graphs together with conditional probability dis-
tributions which can contain cycles. Practically, we solve the
problem to determine the structure of the network which fits
best to the data by unfolding the dynamic Bayesian network

in time. This results in a normal Bayesian network that can
be treated in the way described before.

III. RESULTS

Our major objective in this paper is to study the influence of
external noise on the inference of dynamic Bayesian networks
from short time series to see if this mathematical framework
is suitable to be applied to experimental data from microarray
experiments. This is an important question, because external
noise which models measurement errors are inevitable in any
kind of experiments and especially in biological experiments.
In the following simulations we used the network structure
consisting of 12 genes as shown in Fig. 1 together with 30
random genes serving as distractors (not shown in the figure)
and two different dynamics for the gene activities as described
in section II-A and II-B. We corrupted the dynamics of both
models by external noise by inverting the activity of each
gene X t

i at each time step t with probability pε. From these
models we generated time series of length T = 100 to infer
the network structure with a dynamic Bayesian network.

A. Influence of external noise on the overall performance

The results for the Boolean network are shown in Fig.
4 and for the stochastic Boolean network in Fig. 5. The
rows in each figure correspond the the amount of external
noise pε = {0.1, 0.3, 0.4} used to disturb the dynamics.
The results are visualized by the receiver operator charac-
teristics (ROC) curves. A ROC curve plots the sensitivity
= TP/(TP + FN) against the complementary specificity =
1−TN/(TN+FP ) = FP/(TN +FP ). Due to the fact, that
we approximated the posterior distribution P (G|D) in Eq. 4
by MCMC simulation rather than determined its corresponding
MAP we have only probabilities for the presence of an edge
in a network [8]. That means, we have to choose a threshold
γ ∈ [0, 1] if we decide to accept an edge,

Wij =
{

1 : P (Wij |D) ≥ γ
0 : P (Wij |D) < γ

(7)

Hence, the sensitivity as well as the complementary specificity
depend on γ implicitly. With other words, the ROC curves
shown in Fig. 4 and 5 are parameterized by γ. The diagonals
shown as dashed line in Fig. 4 and 5 correspond to a
completely random prediction.

From the top and middle Fig. 4 one can see that the
Boolean networks can almost completely be reconstructed
for external noise up to pε = 0.2. This is remarkable if
one bears in mind that the time series used to extract this
information from consisted of only 100 time steps. For pε =
0.3 the performance dropped, but is still much better than
a random predictor as indicated by the dashed line. These
results can be viewed as ideal cases which give theoretical
bonds to what can be expected from more realistic models or
even experimental data themselves, because of the underlying
deterministic dynamics of the genes. The results for the more
biologically realistic model, the stochastic Boolean network,
are shown in Fig. 5. The performance decreases evidently. For
pε = 0.1 we obtain still good results, because one gets, e.g.,



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:10, 2007

539

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4. Sensitivity in depends on the complementary specificity for a
Boolean network with 12 connected genes and additionally 30 genes serving
as destructors. The structure of the connected network is shown in Fig.
1. Different rows correspond to different values of external noise pε. Top:
pε = 0.1. Middle: pε = 0.2. Bottom: pε = 0.3. The time series used to infer
the network structure was T = 100 time steps long.

about 55% sensitivity for only 10% complementary specificity.
This means the number of true positives - correctly predicted
edges in the network - is much higher than the number of false
positives - incorrectly predicted edges in the network. From an
experimental point of view this enables the possibility to test
some predicted edges, by other experimental methods, with a
high probability to confirm these results. For increasing values
of the external noise pε the results getting worse. However,
even for pε = 0.3 the recovered network structure is clearly
better than random.
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Fig. 5. Sensitivity in depends on the complementary specificity stochastic
Boolean network with 12 connected genes and additionally 30 genes serving
as destructors. The structure of the connected network is shown in Fig. 1.
Different rows correspond to different values of external noise pε. Top: pε =
0.1. Middle: pε = 0.2. Bottom: pε = 0.3. The time series used to infer the
network structure was T = 100 time steps long.

B. Influence of external noise on edge-probabilities

Now, we want to take a closer look to the obtained results
by studying the edge-probabilities p(Ei,j |D) of the posterior
distribution in Eq. 4. In table II and III we give these values
for all 13 edges in the graph shown in Fig. 1. For the
Boolean network and pε = 0.1 all edges probabilities are
very high as expected. For pε = 0.2 the values are still
high except for E10,7. There are only four edges which are
predicted for all noise cases with 100%, E1,8, E4,3, E6,5 and
E9,4. None of these edges contributes to an or-gate, but three
of them (E1,8, E6,5 and E9,4) to a not-gate. Interestingly,
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TABLE II

EDGE-PROBABILITIES Ei,j OF THE POSTERIOR DISTRIBUTION IN EQ. 4

FOR THE NETWORK WITH BOOLEAN FUNCTIONS TO CONNECT GENE i

WITH GENE j . THE THREE COLUMNS CORRESPOND TO

pε = {0.1, 0.2, 0.3} (SECOND, THIRD, FORTH COLUMN).

E1,8 1.0000 1.0000 1.0000

E3,1 0.9485 0.6818 0.1371

E3,2 1.0000 0.9087 0.1948

E4,3 1.0000 1.0000 1.0000

E5,2 0.7429 1.0000 1.0000

E6,5 1.0000 1.0000 1.0000

E8,4 1.0000 1.0000 0.6700

E9,4 1.0000 1.0000 1.0000

E10,6 1.0000 1.0000 0.4664

E10,7 1.0000 0 0.0118

E11,9 1.0000 0.4740 0

E11,10 1.0000 0.6134 0

E12,11 0.8637 1.0000 0.7242

exactly these three edges are among the lowest probabilities
for the stochastic Boolean network in table III and the edge-
probabilities for edges contribution to an or-gate are among the
highest. This raises the question if this is a systematic effect or
happened just by change in the small network structure used.

IV. CONCLUSIONS

In this paper we examined the influence of external noise
on the inference of dynamic Bayesian networks from short
time series. Here external noise represents perturbations of the
observed systems dynamic, e.g., due to measurement errors
inevitably present in every experiment. Hence, we were deal-
ing with the principle question if dynamic Bayesian networks
are suitable to be applied under such conditions. Practically,
these conditions correspond, e.g., to data from microarray
experiments which allow to monitor the mRNA concentration
of thousands of genes simultaneously within a cell. In this
context the reconstructed network structure corresponds to a
gene network, e.g., the transcription regulatory network.

We found that increasing values of external noise reduces
significantly the overall performance. However, the results are
still much better than random and provide by this reasonable
predictions which can be tested in further experiments. This
holds even for the stochastic Boolean networks which provide
certainly a better abstraction of the real biological processes
than the deterministic Boolean networks. Interestingly, we
found that the logical functions (deterministic or stochastic)
can be learned with different precision in both settings. For ex-
ample, the not-gate can be learned best for Boolean networks,
but worst for stochastic Boolean networks. This could have
important consequences for inferring transcription regulatory
networks, because this implies that there is a bias for certain
types of transcription regulation logic which causes difficulties
to be inferred from the data for theoretical reasons.
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TABLE III

EDGE-PROBABILITIES Ei,j OF THE POSTERIOR DISTRIBUTION IN EQ. 4

FOR THE NETWORK WITH STOCHASTIC BOOLEAN FUNCTIONS TO

CONNECT GENE i WITH GENE j . THE THREE COLUMNS CORRESPOND TO

pε = {0.1, 0.2, 0.3} (SECOND, THIRD, FORTH COLUMN).

E1,8 0.0302 0.0471 0.0255

E3,1 0.3256 0.4826 0.1585

E3,2 1.0000 0.9896 0.0774

E4,3 0.2062 0.0569 0.0190

E5,2 0.2034 0.1264 0.0218

E6,5 0.1861 0.0521 0.0824

E8,4 0.0440 0.0013 0.0126

E9,4 0.0056 0 0.0047

E10,6 0.4332 0.7617 0.4345

E10,7 1.0000 0.7118 0.7067

E11,9 0.7455 0.3333 0.0917

E11,10 0.9832 0.3726 0.1135

E12,11 0.0041 0.0551 0.0413
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