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lower values for bearing capacity factors, Nq and N. Matching 
of other yield criteria like D-P with M-C under axial 
compression relevant to bearing capacity problem of circular 
footings is made at the top point of Fig. 8, where b is zero. For 
other points; the D-P circles lies outside of the M-C hexagon. 
This indicates higher strength with increase in b. This effect is 
demonstrated by the dashed line curve in Fig. 10. When the 
effect of 2 being greater than 3 is considered both in 
equilibrium and yield equations; the full line curve of Fig. 10 
is obtained. Comparison of these two curves indicates again, 
the reduction in Nq and N due to participation of 2 in 
equilibrium equations. The full line curve indicates the net 
effect has been increase in bearing capacity factors in case of 
 = 30o.  

 

 

(a) 
 

 

(b) 

Fig. 10 Effect of variation of b on (a) Nq and (b) N for circular 
footing 

IV. CONCLUSION 

Tresca and Mohr-Coulomb yield criteria have long been 
criticized for not considering the effect of intermediate 
principal stress. As typical stress level- dependent and 
independent yield criteria that consider the effect of 2; von 
Mises and Drucker-Prager were selected for investigating the 
effect of 2 on solution of bearing capacity problem under 

plane strain and axisymmetric conditions. It was found that in 
plane strain condition; the value of 2 may be different from 
what is usually assumed and this may be due to non-
associativity in soil behavior. It was shown that under such a 
condition, a lower bearing capacity is obtained. Therefore; the 
usual solution to bearing capacity of strip footings would not 
be conservative. 

In the axisymmetric conditions however; 2 enters the 
equilibrium equations as well; and if the Mohr-Coulomb 
criterion is employed for bearing capacity calculation of 
circular footings; increase in 2 relative to other principal 
stresses results in decrease in bearing capacity. Therefore; if in 
reality, 2 is greater than 3; this effect should be considered 
in calculations. If other criteria that include 2 are used instead 
of Mohr-Coulomb; the calculated bearing capacity may be less 
or more than what is usually calculated, depending on the 
criterion used, and the amount 2 has been taken more than 3. 
In case of Drucker-Prager for example; the net effect has been 
shown here to be a little increase in the calculated bearing 
capacity. 

REFERENCES  
[1] P. V. Lade “Assessment of test data for selection of 3-D failure criterion 

for sand.” Int. J. Numer. Anal. Meth. Geomech, 2006; 30:307–333. 
[2] R. O. Davis and A. P. S. Selvadurai, Plasticity and Geomechanics. 

Cambridge University Press, 2002, 287 p. 
[3] H. Tresca, Sur l’ecoulement des corps solids soumis `a de fortes 

pression, Comptes Rendus Acad. Sci. Paris, 1864, 59, 754. 
[4] R. von Mises, Mechanik der festen Koerper im plastisch-deformablen 

Zustand, Nachr. d. K. Ges. d. Wiss G¨ottingen, Math.-Phys. Kl., 1913, 
582–592. 

[5] V. G. Solberg “Development and Implementation of Effective Stress 
Soil Models.” M.Sc. Thesis, Under Supervision of Dr. S. Nordal, 
Department of Civil and Transport Engineering, Norwegian University 
of Science and Technology. (2014).188 pp. 

[6] G. Vikash, A. Prashant “Calibration of 3-D Failure Criteria for Soils 
Using Plane Strain Shear Strength Data.” GeoShanghai 2010 
International Conference, pp.86-91. 

[7] M. E. Harr, Foundation of Theoretical Soil Mechanics. McGraw-Hill, 
1966, New York, 381 p. 

[8] C. M. Martin, “Exact bearing capacity calculations using the method of 
characteristics.” Turin 4, 2005, pp. 441-450. 

[9] H. Jiang, Y. Xie “A note on the Mohr-Coulomb and Drucker-Prager 
strength criteria.” Mech. Research Comunications, Vol. 38, 2011, pp. 
309-314. 

[10] D. C. Drucker, W. Prager, ‘Soil mechanics and plastic analysis or limit 
design’, Quarterly of applied mathematics 10(2), 157–165. (1952). 

15

30

45

60

75

90

105

120

0 0,1 0,2 0,3 0,4

Nq

b

Circular Footing  (=30)

b=0 in equil.eq. (D-P)

b>0 in equil. Eq. (D-P)

M-C

3
5
7
9

11
13
15
17
19
21
23
25

0 0,1 0,2 0,3 0,4

N

b

Circular Footing (=30)

b=0 in equil.eq. (D-P)

b>0 in equil. Eq. (D-P)

M-C


