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Abstract—A decomposition of a graph G is a collection ψ of
graphs H1, H2, . . . , Hr of G such that every edge of G belongs
to exactly one Hi. If each Hi is either an induced path in G,
then ψ is called an induced acyclic path decomposition of G and
if each Hi is a (induced) cycle in G then ψ is called a (induced)
cycle decomposition of G. The minimum cardinality of an induced
acyclic path decomposition of G is called the induced acyclic path
decomposition number of G and is denoted by πia(G). Similarly
the cyclic decomposition number πc(G) is defined. In this paper we
begin an investigation of these parameters.

Keywords—Cycle decomposition, Induced acyclic path decompo-
sition, Induced acyclic path decomposition number.

I. INTRODUCTION

BY a graph G = (V,E) we mean a finite, connected,
undirected graph without loops or multiple edges. For

graph theoretic terminology we refer to Chartrand and Lesniak
[8]. The order and size of a graph are denoted by n and m

respectively.
Let P = (v1, v2, . . . , vr) be a path in a graph G = (V,E).

The vertices v2, . . . , vr−1 are called internal vertices of P and
v1 and vr are called external vertices of P . Two paths P

and Q of a graph G are said to be internally disjoint if no
vertex of G is an internal vertex of both P and Q. If P =
(v0, v1, v2, . . . , vr) and Q = (vr = w0, w1, w2, . . . , ws) are
two paths in G, then the walk obtained by concatenating P

and Q at vr is denoted by P◦Q and the path (vn, vn−1, . . . , v0)
is denoted by P−1.

A decomposition of a graph G is a collection of subgraphs
H1,H2, . . . , Hr of G such that every edge of G belongs
to exactly one Hi. Various types of decompositions and
corresponding parameters have been studied by several authors
by imposing conditions on the members of the decomposition.
Some such decomposition parameters are path decomposi-
tion number, acyclic path decomposition number and simple
acyclic path decomposition number which are defined as
follows.

Let ψ = {H1,H2, . . . , Hr} be a decomposition of a graph
G. If each Hi is a path or a cycle, then ψ is called a path
decomposition of G. If each Hi is a path, then ψ is called
an acyclic path decomposition of G. Further, an acyclic path
decomposition in which any two paths have at most one vertex
in common is called a simple acyclic path decomposition of
G. The minimum cardinality of a path decomposition (acyclic
path decomposition, simple acyclic path decomposition) of
G is called the path decomposition number (acyclic path
decomposition number, simple acyclic path decomposition
number) of G and is denoted by π(G), (πa(G), πas(G)).
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The parameter πa was introduced by Harary [9] and further
studied by Harary and Schwenk [10], Peroche [11], Stanton et
al. [13] and Arumugam and Suresh Suseela [7] who used the
notation π for the acyclic path decomposition number of G
and called an acyclic path decomposition as path cover. The
parameter πas was introduced by Arumugam and Sahul Hamid
[5] who used πs for simple acyclic path decomposition number
and called a simple acyclic path decomposition as a simple
path cover and the parameter π was introduced by Arumugam
et al. [6].

Further, by imposing on each of the decomposition defined
above the condition that every vertex of G is an internal vertex
of at most one member of the decomposition, we get an
another set of path covering parameters, namely, graphoidal
covering number η(G), acyclic graphoidal covering number
ηa(G), simple graphoidal covering number ηs(G) and simple
acyclic graphoidal covering number ηas(G) and all these
parameters can be found respectively in [1], [7], [4] and [3].

In [5] it has been observed that every member of a simple
acyclic path decomposition of a graph G is an induced path
in G. However, a collection ψ of induced paths such that
every edge of G is exactly one path in ψ need not be a
simple acyclic path decomposition of G. Motivated by this
observation, Arumugam [2] introduced the concept of induced
path decomposition and induced path decomposition number
of a graph and Sahul Hamid and Abraham [12] initiated the
study of this parameter.

In this paper we introduce two more decomposition param-
eters, namely, induced acyclic path decomposition number,
cycle decomposition number and we begin an investigation
of these parameters.

II. INDUCED ACYCLIC PATH DECOMPOSITION

In this section we introduce the notion of induced acyclic
path decomposition and induced acyclic path decomposition
number and determine the value of this parameter for several
families of graphs such as complete graphs, complete bipartite
graphs, wheels, trees and unicyclic graphs. Further we exhibit
the relation between this parameter with some existing decom-
position parameters.

Definition 2.1. An acyclic path cover ψ of G such that every
path in ψ is an induced path is called an induced acyclic
path cover. The minimum cardinality of an induced acyclic
path cover of G is called by the induced acyclic path covering
number of G and is denoted by πia(G).

Example 2.2. Consider the graph G given in Figure 1.
Here ψ = {(v1, v2, v4, v6), (v3, v4, v5), (v5, v2, v3)} is a

minimum induced acyclic path cover of G so that πia(G) = 3.
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Fig. 1. Induced acyclic path decomposition in a graph.

Remark 2.3. Since the edges are the only induced path of a
complete graph Kn it follows that πia(Kn) = n

2 . Since every
acyclic path decomposition of a tree T is induced and since
it has been proved that πia(T ) = k

2 where k is the number of
vertices of odd degree.

Theorem 2.4. For the complete bipartite graph Kr,s with r ≤
s we have πia(Kr,s) = � rs2 �.

Proof: Let

X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}

be the bipartition of Kr,s. We observe that every member of
an induced acyclic path cover of Kr,s is either a path of length
two or an edge. Let

Pij = (x2i−1, yj , x2i), ∀i = 1, 2, . . . ,
⌊r
2

⌋
,

j = 1, 2, . . . , s,

Qi = (y2i−1, xr, y2i), ∀i = 1, 2, . . . ,
⌈s
2

⌉
− 1,

Q� s

2
� =

{
(xr, ys) if s is odd,

(ys−1, xr, ys) if s is even.

Now let ψ =
⋃ r

2

i=1(
⋃s

j=1 Pij) if r is even and let

ψ =

⎛
⎝� r

2
�⋃

i=1

⎛
⎝ s⋃
j=1

Pij

⎞
⎠

⎞
⎠ ∪ {Q1, Q2, . . . , Q� s

2
�}, otherwise.

Then ψ is an induced acyclic path cover of Kr,s. Now, if r
is even, then |ψ| = rs

2 . Suppose r is odd. Then

|ψ| =

⎧⎨
⎩

(r−1)s
2 + s

2 if s is even

(r−1)s
2 + s+1

2 if s is odd

=

{
rs
2 if s is even

rs+1
2 if s is odd

=
⌈rs

2

⌉
.

Hence πia(Kr,s) ≤ |ψ| = � rs2 �.
Further, since every member of any induced acylic path

covers of ψ covers at most two edges, we have |ψ| ≥ � rs2 � so
that πia(Kr,s) ≥ � rs2 �.

Thus πia(Kr,s) = � rs2 �.

Theorem 2.5. For the wheel Wn = Cn−1 +K1, we have

πia(Wn) =

{
6 if n = 4,

�n−1
2 � + 2 otherwise.

Proof: If n = 4, then Wn = K4 so that πia(Wn) = 6.
Assume n ≥ 5. Let

V (Wn) = {v0, v1, v2, . . . , vn−1} and

E(Wn) = {v0vi : 1 ≤ i ≤ n− 1}

∪{vivi+1 : 1 ≤ i ≤ n− 2} ∪ {vn−1, v1}.

Let

Pi =

{
vi, v0, vn−1

2
+i if n is odd,

vi, v0, vn−2

2
+i if n is even,

∀i = 1, 2, . . . ,

⌈
n− 1

2

⌉
− 1

P�n−1

2 � =

{
(vn−1

2

, v0, vn−1) if n is odd,

(v0, vn−1) if n is even,

Q1 = (v1, v2, v3) and

Q2 = (v3, v4, . . . , vn−1, v1).

Then ψ = {P1, P2, . . . , P�n−1

2
�, Q1, Q2} is an induced path

cover of Wn so that

πia(Wn) ≤ |ψ| =

⌈
n− 1

2

⌉
+ 2

Now, the minimum number of paths required to cover the
n−1 spokes of the wheel in �n−1

2 � and hence for any induced
acyclic path cover ψ we have |ψ| ≥ �n−1

2 � + 2 so that
πia(Wn) ≥ �n−1

2 � + 2. Thus πia(Wn) = �n−1
2 � + 2.

Theorem 2.6. Let G be a unicyclic graph with the cycle C =
(v1, v2, . . . , vn, v1). Let m denote the number of vertices of
degree greater than two on C. Let k be the number of vertices
of odd degree. Then

πia(G) =

{
k
2 + 2 if n = 3 and m = 1,

πi otherwise.

Proof: If n ≥ 4 or n = 3 and m ≥ 2, then the minimum
induced path covers constructed in all the cases of Theorem
3.10 are minimum induced acyclic path covers of G so that
πia(G) = πi(G).

Suppose n = 3 and m = 1. Then C = (v1, v2, v3, v1). Let
v1 be the vertex of degree greater than two on C. Let T be
the sub tree rooted at v1 and let ψ1 be a minimum induced
acyclic path cover of T so that |ψ1| = k

2 .
If deg v1 is odd, let P1 be the path in ψ1 having v1 as a

terminal vertex. Now let Q1 = P1 ◦ (v1, v2), Q2 = (v2, v3)
and Q3 = (v3, v1).

If deg v1 is even, then let P1 =
(u1, u2, . . . , un, v1, ur+1, . . . , us) be a path in
ψ1 having v1 as an internal vertex. Now let
Q1 = (u1, u2, . . . , ur, v1, v2), Q2 = (v2, v3) and
Q3 = (us, us−1, . . . , ur+1, v1, v3).
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Then ψ = (ψ1−{P1})∪{Q1, Q2, Q3} is an induced acyclic
path cover so that πia(G) ≤ |ψ| = |ψ1|+2 = k

2 +2. Further for
any induced acyclic path cover ψ of G, the vertices v2 and v3
are exterior to ψ so that |ψ| ≥ k

2 +2 and hence πia(G) ≥ k
2 +2.

Thus πia(G) = k
2 + 2.

Theorem 2.7. For any induced path cover ψ of a graph G, let
tψ =

∑
P∈ψ t(P ) where t(P ) denotes the number of internal

vertices of P and let t = max tψ where the maximum is taken
over all induced path cover ψ of G. Then πia = m− t.

Proof: Let ψ be an induced path decomposition of G.
Then

m =
∑
P∈ψ

|E(P )|

=
∑
P∈ψ

(t(P ) + 1)

=
∑
P∈ψ

t(P ) + |ψ|

= tψ + |ψ|

Hence |ψ| = m− tψ so that πia = m− t.

Corollary 2.8. For any graph G with k vertices of odd degree,
we have πia(G) = k

2 +
∑
v∈V (G)	

deg v
2 
 − t.

Proof: Since m = k
2 +

∑
v∈V (G)	

deg v
2 
, the result

follows.

Corollary 2.9. For any graph G, πia(G) ≥ k
2 . Further

πia(G) = k
2 if and only if there exists an induced path cover

of ψ of G such that every vertex v of G is an internal vertex
of 	deg v

2 
 paths in ψ.

Theorem 2.10. For any graph G, πia(G) ≤ m. Further
equality holds if and only if G is complete.

Proof: Suppose there exists two vertices u and v in G

which are not adjacent. Let P be a shortest u–v path in G

so that P is an induced path and |E(P )| > 1. Then ψ =
{P} ∪ (E(G)−E(P )) is an induced acyclic path cover of G
such that |ψ| < m and hence πia(G) < m.

Conversely, suppose G is complete. Then every induced
acyclic path of G is of length one and hence πia(G) = m.

Remark 2.11. Since every induced acyclic path cover of a
graph G is an induced path cover of G and every induced
path cover of G is a path cover we have πia ≥ πi ≥ π. These
inequalities can be strict. For example, for the complete graph
K4, π = 2, πi = 4 and πia = 6.

Theorem 2.12. For any graph G, πia(G) ≥

(
ω

2

)
where ω

is the clique number of G.

Proof: Let H be a maximum clique in G. Let ψ be any
induced acyclic path cover of G. Then every path in ψ covers

at most one edge of H so that |ψ| ≥

(
ω

2

)
. Hence πia(G) ≥(

ω

2

)
.

III. CYCLE DECOMPOSITION

In this section we introduce the concept of cycle decompo-
sition of a graph.

Definition 3.1. Let G be an eulerian graph. The minimum
number of cycles required to decompose G is called the cycle
decomposition number and is denoted by πc(G) or πc.

Theorem 3.2. [14] There exists a decomposition of the
complete graph Kn of order n = 2 into Hamiltonian path
(cycles) if and only if n is even (odd).

According to this theorem Kn can be decomposed into n
2

copies of Hamiltonian paths of length n− 1, if n is even, and
n−1

2 copies of Hamiltonian cycles of length n, if n is odd.

Remark 3.3. If G is Hamiltonian cycle decomposable then
π = πc. In particular if n is odd π(Kn) = πc(Kn).

Example 3.4. For the graph given in Figure 2, we have π =
πa = πc = 2.

Fig. 2. A graph showing π = πa = πc = 2.

Problem 3.5. Characterize Eulerian graph for which π =
πa = πc.

Remark 3.6. If G is graph having exactly one cut vertex in
which each block is a cycle, then π = πa = πc = r where r
is the number of blocks.

Remark 3.7. Since every cycle cover of an eulerian graph G
is a path cover we have π ≤ πc. This inequality can be strict.
For example, the graph G in Figure 3, we have π = 2, πc = 3.

Fig. 3. Demonstration of π ≤ πc.

Question 3.8. For a given positive integer n does there exist
a graph G for which πc = π = n.

Problem 3.9. Characterize eulerian graphs for which π = πc.

Remark 3.10. For any graph G if a πc-cover contains cycles
C1, C2 and C3 as in Figure 5.3 we have πc > π.
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Remark 3.11. Let G1, G2 be two eulerian graphs and G be
the graph obtained by identifying G1 and G2 at a vertex. Then
πc(G) = πc(G1) + πc(G2).

IV. CONCLUSION AND SCOPE

A decomposition of a graph G is a collection of edged
is joint subgraphs of G whose union is G. Various types
of decomposition and corresponding parameters have been
studied by imposing certain condition on the members of
the decomposition. The key condition that we impose here
is ”inducedness” and arrived at the concept of acyclic induced
path decomposition and the acyclic induced path decompo-
sition number πia(G). Here, we first determined πia(G) for
several families of graphs and obtained some bounds for πia
together with the characterization of graphs attaining these
bounds and finally discuss the relation of πia with some well-
known related parameters.

Even if this paper is just an initiation of the concept
of induced acyclic path decomposition, numerous problems
can be identified for further investigation and here are some
interesting problems.

(a) Characterize graphs for which πia =

(
ω

2

)
.

(b) For a tree T we have π = πa = πi = πia. So
characterize graphs for which π = πa = πi = πia.
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