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Abstract—This paper presents the hardware implemented and 

validation for a special system to assist the unprofessional users of 
car with back trailers. The system consists of two platforms; the front 
car platform (C) and the trailer platform (T). The main objective is to 
control the Trailer platform using the actuators found in the front 
platform (c). The mobility of the platform (C) is investigated and 
inverse and forward kinematics model is obtained for both platforms 
(C) and (T).The system is simulated using Matlab M-file and the 
simulation examples results illustrated the system performance. The 
system is constructed with a hardware setup for the front and trailer 
platform. The hardware experimental results and the simulated 
examples outputs showed the validation of the hardware setup. 
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I. INTRODUCTION 

URING the last decade, the automotive industrial 
countries invested in developing smart cars [1]. Such cars 

preferred to be semi-automated to help the non-professional 
drivers in maneuvering and avoiding car accidents [2].  

Many surveys were done to determine the severity of these 
accidents. The national transport commission stated that just in 
one country (Australia) and in 12 months till April 2011, there 
were 1334 death on the Australian roads. Also from the 
economical point of view, the annual cost of road crashes in 
Australia is about 18 billion dollars [3]. 

Such trend motivated researchers developing systems to 
minimize the damage whether in human lives or on the 
financial side. Many techniques were developed to solve this 
problem. One of these main problems is collision avoidance. 
Optimal control techniques as neural network or optimization 
systems are commonly used for such trend [4], [5]. 

Civilians nowadays like travelling and camping, so they 
attach a caravan or an extra luggage to their cars. One of the 
fatal problems that face them is the maneuvering while driving 
and parking these trailers. This motivated scientists and 
researchers to find out a solution to help out the non-
professional drivers in maneuvering and parking in small 
spaces [6], [7]. 

In [8], [9], the backing control simulated model of a robot 
with multi-level of trailers using fuzzy controllers is presented.  

Implementing an autonomous system that assists the driver 
during catastrophic incidents and compensate for man error is 
one of the main aims to minimize accidental rates.  
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For example, the main controller of the car with a platform 
(T) is the platform (C). The classical system nowadays 
depends on a mechanical differential system between the rear 
two wheels to minimize the sliding of any of them when the 
car tries to take a curvature as shown in Fig. 1. 

 

 

Fig. 1 Differential System with Gears (Front/Rear Wheel Drive) 
 

That is why the new system is proposed. The proposed 
system depends on an electromechanical solution by removing 
the coupling part between the two rear wheels and substituting 
this mechanical system by two actuators; one for each wheel 
as shown in Fig. 2. 

 

 

Fig. 2 Individual Wheel Actuated System 
 

The proposed model allows each wheel to have an 
independent angular velocity; therefore the sliding condition 
between the two rear wheels does not exist anymore. 
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0
0

0 0 1 0
0 0 0 1

 (7) 

 
wherePC is the position co-ordinates of platform (C) and PSis 
the position co-ordinates of platform (C) steering point (S). 

III. HARDWARE IMPLEMENTATION 

This section studies the construction of the system whether 
mechanically or electrically, and the integration of these two 
stages to deliver the hardware setup by which the system is 
validated with respect to the developed theories in this paper. 

A. Mechanical Construction 

This section explains in detail the mechanical construction 
of both platforms (C and T), the system is divided into three 
main parts, the front car (platform (C)), the back trailer 
(platform (T)), and the link between the two platforms as 
shown in Fig. 4. 

 

 

Fig. 4 Real Hardware Implementation 

1. Platform (C) 

The front car has two rear motors responsible for the car 
motion and a steering motor for changing the direction of 
motion. The rear motors are fixed to the body and connected 
directly to the rear wheels, while the steering motor is fixed to 
the body and connected to the steering wheels through a 
mechanical transmission system as shown in Fig. 4. 

2. Platform (T) 

The back trailer is an aluminum box with a rod connected to 
two conventional wheels without any actuators; the wheels are 
at one third of the trailers back as shown in Fig. 4. 

By this the mechanical construction section is completed 
and the electrical hardware elements should be identified. 

B. Electrical Elements 

All the actuating elements are connected to the front car 
only, while the sensing ones might be connected to both the 
front car and the trailer just to measure the position of both 
platforms. The electrical hardware elements connected to the 
front car and the trailer and their functions as shown in Fig. 5. 

 

 

Fig. 5 Electrical Hardware Elements 

IV. CONTROL MODEL 

 The output of the platform (T) inverse kinematics is 
considered to be the set-point for platform (C) PC . The 
rotation angular velocity Z  is integrated, and then used in 
calculating the new steering angle θ  afterbeing compared to 
the integration of the measured rotation angular velocity 

Z . 
When PC  is subjected to the inverse kinematics of 

platform (C), frame transformation between the robot 
velocities and the wheels’ speeds is done to get the new 
reference wheels’ speeds (q that are compared to the 
measured wheels’ speeds (q , then subjected to the motor 
model with the PI-controller. 

The measured wheels’ speeds (q  then are subjected to the 
forward kinematics of platform (C) forming a new frame 
transformation to get the robot measured velocities PC . The 
new robot measured velocities are subjected to the forward 
kinematics of platform (T), getting the platform (T) new 
measured velocities PT  that are integrated and compared to 
the Trajectory Positions Reference as shown in Fig. 6. 

V. SIMULATION & PRACTICAL RESULTS 

This section of the paper shows the performance of the 
control system developed for platform (T) by applying two 
different position trajectories; a constant position input and a 
variable position input. The first example is represented by the 
input values of a fixed position in the X-direction. This 
reference positions should make the platform (T) follow 
platform (C) for a trajectory path in X-direction Fig. 7. 
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Fig. 6 System Full Control Loop 
 

 

Fig. 7 Platform (C) Trajectory 
 
This transient stage of increasing and decreasing velocity in 

Y-direction cannot be removed; as it exists due to the 
dimensions of the platform (C) and the linked platform (T). 

The velocity in X-direction starts by zero, and keeps 
increasing as the platform (C) keeps rotating with the linked 
trailer until its position starts to be parallel to the X-axis with 
more constrains such that platform (T) must not slide, then the 
velocity keeps constant as the robot keeps moving in the X-
direction as shown in Fig. 8.  

 

 

Fig. 8 Both Platforms Simulated Velocities 
 
For the experimental results; the velocity in X-direction 

starts by zero, and keeps increasing as the platform (C) keeps 
rotating with the linked trailer until its position starts to be 
parallel to the X-axis with more constrains such that platform 

(T) must not slide, then the velocity keeps constant as the 
robot keeps moving in the X-direction as shown in Fig. 9.  

 

 

Fig. 9 Both Platforms Measured Velocities 
 
By comparing the both results, the robot velocity in the x-

direction is almost the same, while for the y-direction the 
experimental results has some constant regions before 
reaching zero due to the steering constrains of the mechanical 
system as the front wheels has a maximum limit of rotating 
angle. 

 

 

Fig. 10 Platform (C) and Platform (T) Trajectory 
 
For the second example is represented by a variable 

position input. This reference positions should make both 
platforms (C and T) follow a trajectory of a circular path 
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shown in Fig. 10, which represents a motion in the four 
quadrants of the platform (C) Cartesian plane starting with a 
negative motion in the X-direction. 

For the experimental results, the second experiment is 
represented by a variable position input. This reference 
positions should make both platforms (C and T) follow a 
trajectory of a circular path Figs. 11 (a), (b) which represents a 
motion in the four quadrants of the platform (C) Cartesian 
plane starting with a negative motion in the X-direction. 

 

 

Fig. 11 (a) Platform (C) Trajectory 
 

 

Fig. 11 (b) Platform (T) Trajectory 
 
Figs. 11 (a), (b) show the platform (C) and platform (T) 

positions fluctuate from zero to maximum until both 
platforms’ (C and T) positions in the X-direction are 
horizontal (perpendicular to the Y-axis), then starts decreasing 
until both platforms’ (C and T) positions in the X-direction are 
vertical (parallel to the Y-axis). Then from zero to minimum 
until both platforms’ (C and T) positions in the X-direction are 
horizontal (perpendicular to the Y-axis), then starts decreasing 
until both platforms’ (C and T) positions in the X-direction are 
vertical (parallel to the Y-axis) as both velocities in X-
direction and Y-direction fluctuates forming the circular path 
shown in Figs. 12 (a), (b). 

 

 

Fig. 12 (a) Platform (C) Measured Velocity 
 

 

Fig. 12 (b) Platform (T) Measured Velocity 
 
It is obvious from Fig. 13 that the P-controller effect is 

effective such that the error shown is within the accepted 
range of error (2% – 5%). 

 

 

Fig. 13 Platform (C) and Platform (T) Measured Trajectories 

VI. CONCLUSIONS 

A control system for a car like wheeled mobile robot with a 
back trailer is proposed in this paper. The system consists of 
two platforms; the front car platform (C) and the trailer 
platform (T). The main objective is to control the trailer 
platform using the actuators found in the front platform(C). 
The inverse kinematics is modified to solve the singularity 
problem due to the conventional wheels’ constraints (non-
holonomic constraints – sliding in the X-direction). 

The control technique used was divided into three stages; 
firstly an axes level control for actuators to insure the 
performance of the wheels’ velocities. Secondly, a controller 
based kinematics is established on the front platform(C).  
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Thirdly, a trajectory control for the trailer trajectory uses 
proportional controller. Consequently, the hardware 
implementation of the proposed was established and validated. 
The experimental results showed efficient response with 
acceptable trajectory errors.  
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