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Abstract—In this paper, novel techniques in increasing the accu-
racy and speed of convergence of a Feed forward Back propagation
Artificial Neural Network (FFBPNN) with polynomial activation
function reported in literature is presented. These technique was
subsequently used to determine the coefficients of Autoregressive
Moving Average (ARMA) and Autoregressive (AR) system. The
results obtained by introducing sequential and batch method of weight
initialization, batch method of weight and coefficient update, adaptive
momentum and learning rate technique gives more accurate result
and significant reduction in convergence time when compared t the
traditional method of back propagation algorithm, thereby making
FFBPNN an appropriate technique for online ARMA coefficient
determination.

Keywords—Adaptive Learning rate, Adaptive momentum, Autore-
gressive, Modeling, Neural Network.

I. INTRODUCTION

The use of parametric modeling technique to predict or

reconstruct a data sequence is concerned with the represen-

tation of data in an efficient technique [1]–[5], [11], [13].

This method have been used extensively in radar application,

geophysical application, Medical signal processing, ultrasonic

tissue backscatter coefficient estimation, speech processing,

music understanding and more recently in the field of Mag-

netic Resonance Imaging (MRI) [2], [5], [11]–[13], [18], [19].

The use of parametric modeling technique involve two steps,

namely Model selection and Model parameter determination

[2], [8], [9]. Model selection is primarily concerned with the

selection of appropriate modeling technique to represent the

system or the signals under consideration [2], [4], [8]. some

of the known and widely used models include Autoregressive

Model (AR), Moving Average Model (MA), Auto Regressive

Moving Average with External Input (ARX), Moving Average

(MA) [2], [8], [9]. The use of different types of model may

give similar result for the same system but one of the models

may involve the determination of fewer model parameters,

such a model is said to be more efficient in its representation

than other technique. Furthermore, there exist a relationship

between MA, AR and ARMA modeling system, this rela-

tionship is as captured in wold decomposition theorem [10].

The second step in parametric modeling is the determination
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of model parameters. This involve model order and model

coefficients determination. Model Order determination involve

determining an appropriate and best model order for the

system by avoiding the use of too high model order which

may lead to over fitting and the use of too low model

which normally results in under-fitting, thereby making the

system insensitive to noise. Therefore the need to accurately

determining the appropriate model order for the system is

of high importance in parametric modeling technique [2],

[13]. Determination of model coefficients involve the use of

methods optimal and sub-optimal technique to determine the

ARMA model coefficients. Some of the known techniques

include Prony, Pade Approximation method, Shank, etc and

more recently the use of Neural Network technique [6]–[8].

This report is an improvement to the work reported in [6],

[7]. It involves the introduction of different weight initial-

ization techniques, introduction of adaptive learning rate and

momentum and the introduction of batch method of weight and

coefficient update to the proposed ARMA based FFBPNN.

The organization of this paper is as follows, In section II,

the detail of using Neural network reported in [6], [7] will

be discussed with all necessary equations and calculations

given. Section III discusses method of increasing the speed

of convergence and accuracy of a FFBPNN while the result

obtained will be discussed in section IV, the conclusion is as

contained in section V.

II. AR/ARMA COEFFICIENTS DETERMINATION USING

ARTIFICIAL NEURAL NETWORK TECHNIQUE

An Artificial Neural network (ANN) may consist of three

(3) main types of layers, namely the input, hidden layers (One

or more than one) and the output layer. Each of this layers may

contain one or more nodes or neurons connected together by

neuron weights. A typical neuron contains a summer unit and

an activation function. There exists various activation units

among which are; Bipolar; Sigmoid, Tangent, Polynomial, etc.

A typical ANN neuron is as shown in Fig.1.

The use of FFBPNN in determining the coefficients of

ARMA and NARMA reported in [6], [7] involve the use of

a Three (3) layer network, namely the Input layer, 1-Hidden

layer and 1-Output layer. The hidden layer contains neurons

with adaptive second order polynomial activation function

while the output layer contains a linear activation. The total

number of input nodes is equivalent to the sum of the order

of AR and MA parts. The diagrammatic representation of this

is as shown in Fig. 2
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Fig. 1. FFBPNN showing various Layers and the activation functions

Fig. 2. Neural Network Technique for obtaining ARMA/NARMA coeffi-
cients. [6], [7]

The general ARMA equation is given by,

y(n) = −

p∑

k=1

aky(n − k) +

q∑

k=0

bkx(n − k) (1)

taking z-transform of eq. 1, we have

Y (z) = −

p∑

k=1

akY (z)z−k +

q∑

k=0

bkX(z)z−k (2)

The output of the FFBPNN [6], [7] network is given by

y(n) =
M∑

k=1

wk1Pi(xi) + e(n) (3)

Where M is the number of neurons with polynomial activa-

tion function in the hidden layer. The Polynomial activation

function for the hidden neurons are given by

pi(t) = θ0i + θ1it + θ2it
2 (4)

substituting 4 into 8 gives

y(n) = w11p1(t) + w21p2(t) + . . . + wM1pM (t)e(n) (5)

y(n) = w11(θ01 + θ11t + θ21t
2) + w21(θ02 + θ12t + θ22t

2)

+ . . . + wM1(θ0M + θ1M t + θ2M t
2)

where the input (t) to the activation part of the neuron for

the AR section with order p is given by

ti =

p∑

j=1

vijy(n − j) (6)

that is

tr = v1ry(n − 1) + v2ry(n − 2) + . . . + vpry(n − p) (7)

therefore,

y(n) = w11(θ01 + θ11[v11y(n − 1) + v21y(n − 2)]

+θ12[v11y(n − 1) + v21y(n − 2)]2)

w21(θ02 + θ12[v12y(n − 1) + v22y(n − 2)]

+θ22[v12y(n − 1) + v22y(n − 2)]2)

combining like terms and comparing coefficients we have

ai =

M∑

j=1

wj1θ1jvijy(n − i) (8)

bi =

M∑

j=1

wj1θ1jvijy(n − i) (9)

The weights (wj1, vij) and the polynomial coefficients (θ1j)
are all obtained by the use of back propagation algorithm [?],

[6], [7].

III. INCREASING FFBPNN ACCURACY AND

CONVERGENCE

The traditional Back propagation algorithm suffers from

slow convergence thereby taking longer time in minimizing

the objective Mean Square error (MSE) function. The MSE is

given by

E(n) =
1

2

N∑

j=1

(T − Y )2 (10)

where

T= Target data

Y=Output of the Output node

N= Number of output nodes or Neurons

The weight update equation in traditional back propagation

algorithm is given by

WeightNew = WeightOld + ∆Weight (11)

This is often express mathematically as

W (k + 1) = W (k) + ∆W (K + 1) (12)
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and

∆W (K) = µ
δE

δW

therefore, eq. 12 becomes

W (k + 1) = W (k) + µ
δE

δW
(13)

where µ is the learning rate , also

δE

δW
= δoY

T

δo is the error signal for an output unit and is calculated as

δo = (T − Y )f1(netInputHi
)

Eq. 13 becomes

W (k + 1) = W (k) + µδoY
T (14)

Which is the weight update equation for the output layer.

Similarly the weight update equation for the hidden layers is

given as

W (k + 1) = W (k) + µδhX
T (15)

where

δh = Wkδof
1(InputIn) (16)

By the addition of momentum eq. 14 and eq. 15 becomes

W (k + 1) = W (k) + µδoY
T + α∆W (K − 1) (17)

and

W (k + 1) = W (k) + µδhX
T + α∆W (K − 1) (18)

where α is the momentum term.

Several methods have been suggested in literatures [14]–

[17] as method of increasing the speed and convergence

capability of FFBPNN these include: Choice of initial

weight, Method of weight update, variable learning rate and

Momentum rate. In order to increase the speed of convergence

and accuracy of this FFBPNN, an improved algorithm with

the following characteristics is hereby proposed

�Weight initialization using Nguyen and Widrow Method

�Batch Weight and coefficients Update

�Introduction of Adaptive Learning Rate

�Introduction of Adaptive Momentum

A. Algorithm for calculating Back Propagation with Adaptive

Weight and Adaptive Momentum

In order to simplify the derivation, the algorithm is as

summarized below

1) STEP 1:

Initialize all weights (Wij , Vjk), biases (φij , φk) and

Polynomial coefficients (θ0i, θ1i, θ2i)
2) STEP 2:

Apply all the input vectors X to the input nodes

3) STEP 3:

Calculate the net inputs to the hidden nodes

NetInout =
∑

WijX
T + φij

4) STEP 4:

Evaluate the output of the hidden nodes and their

derivatives

Hidden = pi−hidden(NetInout)

where

pi−hidden(t) = θ0i + θ1it + θ2it
2

5) STEP 5:

Calculate the net inputs to the Output node

NetInout =
∑

VijHidden
T + φk

6) STEP 6:

Evaluate the output of the Output node and its derivative

Hidden = pi−hidden(NetInout)

where,

pi−hidden(t) = t

7) STEP 7:

Evaluate the Error, E(n)
8) STEP 8:

Calculate

∆E = E(k) − E(k − 1)

9) STEP 9:

Implement eq. 22 and eq. 21.

The difference in error between the present iteration and

immediate past iteration determines if the learning rate

and momentum should be increased or decrease. If the

difference in error is greater than ψ , where 0 < ψ <

1 , then the learning rate and momentum are reduced

otherwise they are increased by a factor β, where 0 <

β < 1.

∆E = E(k) − E(k − 1) (19)

W (k + 1) = W (k) + µ(k)δhX
T + α(k)∆W (K − 1)

(20)

with

µ(k+1) =

{
Φµ(k) . . . if . . .∆E > 0; 0 ≤ φ ≤ 1
Φµ(k) . . . if . . .∆E < 0; 1 ≤ φ ≤ 1.9

}

(21)

also for the adaptive momentum α(k), we have

α(k+1) =

{
βα(k) . . . if . . .∆E > 0; 0 ≤ β ≤ 1
βα(k) . . . if . . .∆E < 0; 1 ≤ β ≤ 1.9

}

(22)

10) STEP 10:

Back Propagate the error from the output node to the

hidden nodes

11) STEP 11:

Calculate new weights, biases and polynomial coeffi-

cients

12) STEP 12:

Stop if stopping criteria satisfied else repeat all except

step 1
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IV. RESULT AND DISCUSSION

In this paper, the effect of: weight initialization method;

batch and incremental weight and coefficients update; adaptive

learning rate; fixed and adaptive momentum rate for parametric

AR or ARMA define by will be evaluated. The variance (σ2)
of the white noise input is 0.8.

1) Autoregressive Equation (AR)

y(n) = y(n − 1) − 0.24y(n − 2) + w(n) (23)

2) Autoregressive Moving Average (ARMA)

y(n) = 0.13y(n − 1) − 0.234y(n − 2)

+0.67x(n) + 0.23x(n − 1)

A. Effect of Weight initialization methods on FFBPNN-ARMA

technique

The result obtained from evaluating the effects of weight

initialization on the convergence of FFBPNN-ARMA stated

in Eq. 23 and 24 is as given in table I and II respectively. The

plots of the Mean Square Error (MSE) against epoch are as

shown in Fig. 3 and Fig. 4 for Eq. 23 and 24 respectively.

The three methods of weight initialization considered are (a)

Weight initialization by random number (b) Weight initializa-

tion by Normalized random number (c) weight initialization

by the use of Nguyen and Widrow technique [17]. Results

obtained shows that the use of Nguyen and Widrow technique

converge to the expected MSE value faster than the two other

techniques evaluated in this paper. Furthermore, it was also

observe that the values of the coefficients obtained by the use

of Nguyen and Widrow technique is more accurate than the

other two method.

TABLE I
EFFECT OF INITIAL WEIGHT ON FFBPNN-ARMA (AR, EQ. 23)

Methods MSE

Value

No.

Epoch

a(1) a(2)

Actual Value 1.0 −0.24

Random Num-
ber (RN)

0.001 66 0.9742 −0.2185

N. Random
Number (NRN)

0.001 64 0.9756 −0.2205

Nguyem-
Widrow (NW)

0.001 21 0.9777 −0.2265

Random Num-
ber (RN)

0.0001 75 0.9917 −0.2329

N. Random
Number (NRN)

0.0001 52 0.9922 −0.2340

Nguyem-
Widrow (NW)

0.0001 29 0.9941 −0.2367

B. Effect of Batch Weight and coefficients updates on accuracy

and convergence

In determining AR or ARMA coefficients using FFBPNN-

ARMA, the ANN weights and the coefficients of the poly-

nomial activation function must be updated at the same time.

The effects of incremental and batch weight and coefficients

updates are as shown in Table III and Table IV. Result obtained

from series of experiments shows that the use of incremental
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Fig. 3. Effect of Weight Initialization Techniques on FFBPNN-ARMA (100
Epoch, AR, Eq. 23)

TABLE II
EFFECT OF INITIAL WEIGHT ON FFBPNN-ARMA ( ARMA, EQ. 24)

Methods MSE

Value

a(1) a(2) b(0) b(1)

Actual
Value

0.13 −0.234 0.67 0.23

RN 0.001 0.1100 −0.1988 0.5991 0.2383
NRN 0.001 0.1219 −0.2221 0.6470 0.2403
NW 0.001 0.1197 −0.2323 0.6643 0.2385

RN 0.0001 0.1211 −0.2148 0.6199 0.2315
NRN 0.0001 0.1212 −0.2216 0.6347 0.2367
NW 0.0001 0.1315 −0.2362 0.6649 0.2301
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Fig. 4. Effect of Weight Initialization Techniques on FFBPNN-ARMA
(ARMA, Eq. 24)

or sequential weight and coefficients update converge to the

required MSE value faster than the use of batch weight

and coefficients update. Comparing result of the incremental

weight and coefficients update obtained in Table III to Table I

reveals that increasing the expected MSE value of FFBPNN-
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ARMA syetm, the values of the coefficients obtained will

almost be same with the actual value of the coefficients.

TABLE III
EFFECT OF BATCH WEIGHT AND COEFFICIENTS UPDATES ON

FFBPNN-ARMA (AR, EQ. 23)

Methods Weight

Type

MSE

Value

No.

Epoch

a(1) a(2)

Actual
Value

1.0 0.24

Incremental RN 10−5 89 0.999 −0.240
Incremental NRN 10−5 63 0.996 −0.239
Incremental NW 10−5 41 0.998 −0.240

Batch RN 10−5 91 0.993 −0.234
Batch NRN 10−5 60 0.996 −0.238
Batch NW 10−5 53 0.999 −0.240
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Fig. 5. Effect of Batch and Incremental Weight Update on AR

TABLE IV
EFFECT OF BATCH WEIGHT AND COEFFICIENTS UPDATES ON

FFBPNN-ARMA (ARMA, EQ. 24)

Methods Weight

Type

MSE

Tar-

get

a(1) a(2) b(0) b(1)

Actual
Value

0.13 −0.234 0.67 0.23

Incremental RN 10−5 0.112 −0.227 0.619 0.256
Incremental NRN 10−5 0.125 −0.245 0.635 0.239
Incremental NW 10−5 0.127 −0.234 0.653 0.245

Batch RN 10−5 0.125 −0.263 0.799 0.353
Batch NRN 10−5 0.128 −0.241 0.604 0.322
Batch NW 10−5 0.133 −0.230 0.647 0.285

C. Effect of addition of Momentum term on FFBPNN-ARMA

The introduction of momentum term to FFBPNN-ARMA

as stated in Eq. (20), (22) and (21) are evaluated in this

section. The results obtained (Fig. 7) reveals that the addition

of the term greatly reduce the speed of convergence of the

system. The percentage reduction in number of epoch varies

from 10% to 20%, though the accuracy of the system was not

significantly affected.
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Fig. 7. Effect of addition of Momentum term

D. Effect of Fixed and Adaptive Momentum term on accuracy

and convergence on FFBPNN-ARMA

The introduction of momentum term to FFBPNN-ARMA as

discussed in subsection IV-C is evaluated in this section. Result

obtained shows that the speed of convergence of FFBPNN-

ARMA is greatly increased by the inclusion of this term

in the back propagation algorithm. The percentage reduction

in the number of epoch obtained by implementing adaptive

momentum with batch weight and coefficients update ranges

from 15% to 30%. Table V and Table VI shows the result

obtained by comparing the effect of adaptive momentum (AM)

term to fixed momentum (FM) term for FFBPNN system.

E. Effect of Fixed and Adaptive Learning rate and Momentum

on accuracy and convergence on FFBPNN-ARMA

In this section, the effect of implementing both adaptive

learning rate and adaptive momentum on FFBPNN-ARMA

will be presented. Also the result obtained will be compared

with the result obtained by the use of Incremental and batch
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TABLE V
COMPARING THE EFFECT OF FIXED (F) AND ADAPTIVE (A) MOMENTUM

ON FFBPNN-ARMA (AR, EQ. 23)

Methods Weight

Type

MSE

Value

No.

Epoch

a(1) a(2)

Actual
Value

1.0 0.24

Fixed
Momentum
(FM)

RN 10−5 63 0.999 −0.240

FM NRN 10−5 47 0.999 −0.239
FM NW 10−5 38 0.999 −0.240

Adaptive
Momentum
(AM)

RN 10−5 57 0.980 −0.34

AM NRN 10−5 39 0.969 −0.230
AM NW 10−5 23 1.001 −0.234

TABLE VI
COMPARING THE EFFECT OF FIXED (F) AND ADAPTIVE (A) MOMENTUM

ON FFBPNN-ARMA (ARMA, EQ. 24)

Methods Type Epoch a(1) a(2) b(0) b(1)

Actual
Value

0.13 −0.234 0.67 0.23

FM RN 83 0.144 −0.228 0.656 0.225
FM NRN 79 0.126 −0.229 0.581 0.235
FM NW 63 0.170 −0.238 0.612 0.260
AM RN 62 0.140 −0.234 0.651 0.348
AM NRN 41 0.138 −0.214 0.652 0.310
AM NW 36 0.133 −0.237 0.641 0.256

update of both the weights and polynomial coefficients. Result

obtained by the addition of adaptive learning rate and adaptive

momentum shows a significant reduction in the number of

epoch required for convergence to the expected MSE value.

The percentage reduction achieved varied from 20% to 50%
of the result obtained when using the method reported in

subsection IV-A. Furthermore, the accuracy of the coefficients

is highly improved when compared with any of the techniques

earlier discussed.

TABLE VII
COMPARING THE EFFECT OF FIXED (F) AND ADAPTIVE (A) LEARNING

RATE AND MOMENTUM ON FFBPNN-ARMA (AR, EQ. 23)

Methods Weight

Type

MSE

Value

Epoch a(1) a(2)

Actual
Value

1.00 −0.24

Incremental RN 10−5 34 0.997 −0.229
Incremental NRN 10−5 17 0.999 −0.233
Incremental NW 10−5 16 1.010 −0.237
Batch RN 10−5 29 0.999 −0.241
Batch NRN 10−5 23 1.009 −0.241
Batch NW 10−5 18 1.001 −0.240

V. CONCLUSION

In this work, we present novel techniques of improving

the accuracy and speed of convergence of a FFBPNN-ARMA

system reported in [6], [7]. This system involves obtaining the

coefficients of an ARMA system from the weights of the input

and hidden layer neurons and the coefficients of a polynomial

based activation function in a feed forward back propagation
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Fig. 8. Effect of adaptive Learning rate [α] and adaptive momentum µon
FFBPNN-AR

TABLE VIII
COMPARING THE EFFECT OF FIXED (F) AND ADAPTIVE (A) LEARNING

RATE AND MOMENTUM ON FFBPNN-ARMA (AR, EQ. 24)

Methods Type Epoch a(1) a(2) b(0) b(1)

Actual
Value

0.13 −0.234 0.67 0.23

Incremental RN 46 0.134 −0.238 0.597 0.240
Incremental NRN 38 0.130 −0.228 0.581 0.211
Incremental NW 31 0.170 −0.218 0.642 0.250
Batch RN 16 0.156 −0.202 0.615 0.241
Batch NRN 14 0.145 −0.224 0.600 0.245
Batch NW 11 0.126 −0.231 0.641 0.258

artificial neural network (FFBPNN) system [6], [7]. Results

obtained shows a reduction of 10% to 20% in number of

epoch for a FFBPNN with the addition of momentum term

to the traditional back propagation method of weight update

in a feed forward artificial neural network system. In addition,

a reduction of 15% to 30% in number of epoch was achieved

by the introduction of adaptive momentum to the traditional

back propagation system of equation while a significant 20%
to 50% percentage reduction in number of epoch required

to meet a specified MSE was accomplished by implementing

batch weight and polynomial activation coefficients updates,

adaptive learning rate and adaptive momentum to the system of

traditional back propagation system of weight and coefficient

update for a feed forward neural network system of equation.

Furthermore, initializing the FFBPNN weight with the method

of Nguyen and Widrow and normalized random number to the

use of random value leads to great reduction in convergence

time and number of epoch for a given minimum MSE. It

was also observed that the use of random value for weight

initialization sometimes leads to the FFBPNN converging at

local mimina instead of global minima thereby giving less

accurate value of the coefficients. The areas of application of

this proposed algorithm include Magnetic Resonance Imaging

reconstruction using parametric technique [2], [4], [12], signal

and system modeling [9], [18], [19], Adaptive control, system

and PID tunning.
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