
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

146

Abstract—Data replication in data grid systems is one of the

important solutions that improve availability, scalability, and fault

tolerance. However, this technique can also bring some involved

issues such as maintaining replica consistency. Moreover, as grid

environment are very dynamic some nodes can be more uploaded

than the others to become eventually a bottleneck. The main idea of

our work is to propose a complementary solution between replica

consistency maintenance and dynamic load balancing strategy to

improve access performances under a simulated grid environment.

Keywords—Consistency, replication, data grid, load balancing.

I. INTRODUCTION

RIDS are considered as one of the promiscuous

environment of scientific applications which need an

important set of storage and computing resources. In this kind

of dynamic and large scale environment, the management of

massive data is still being one of the important scientific and

industrial research areas. Data replication is one of these

important research domains.

The replication technique improves data availability,

scalability and fault tolerance, however, the update of replica

by any grid user might bring a critical problem of maintaining

consistency between the other replicas of the grid. Moreover,

according to the frequency access to the different grid nodes,

some nodes are more uploaded then the others. This irregular

evolution provides an unbalance and many resources can be

for example, downloaded and consequently unexploited.

Thus, our main idea is to bring a complementary solution

between replica consistency and load balancing. The objective

of this work is to improve the consistency performances by

taking care of the load of grid nodes. Our contribution consist

to increase the replica consistency performances through a

dynamic load balancing strategy of the grid nodes in order to

guarantee the data availability and reduce the time access with

a minimal communication coast.

In the next section we give an overview of some existing

replica consistency works. Then we define our approach with

the adopted dynamic load balancing strategy. The

experimentations of our approach will be discussed in

experimentations section. Finally, we close this paper with

some conclusions.

Sarra Senhadji, LSSD Laboratory, University of science and Technology,

Oran, Algeria (phone: +213-554-985445; e-mail: senhadji.sarah@gmail.com).

Amar Kateb, University of Science and Technology, Oran, Algeria (e-mail:

kateb_amar@yahoo.fr).
Hafida Belbachir, Professor at the University of Science and Technology,

Oran, Algeria, LSSD Laboratory (e-mail: h_belbach@yahoo.fr).

II. RELATED WORKS

Many works have been done on the replica consistency

domain in distributed systems, such as cluster, peer to peer

and grid. We find many consistency models in the literature

[12]: Strong models, Weak models [13], [15]. Strong

consistency models keep data consistent among all replicas

simultaneously, which requires more resources and expensive

protocols than weak models. Contrary to strong consistency,

weak consistency can tolerate inconsistencies among replicas

for a while to improve access performances.

The authors of [4] addressed the problem of shared data in

data grid systems. The consistency of replicated data is

introduced by relaxed read which is an extension of the entry

Consistency model [5]. Unlike the model of entry consistency,

which ensures that data is current as at the acquisition of its

lock, this new type of operation can be achieved without

locking, in parallel with write operations. However, data

freshness constraint is released and older versions, which

however still be controlled, are accepted. The grid architecture

considered in this work is composed of clients requesting the

data, the data providers and two hierarchical levels: LDG

(Local Data Grid) and GDG (Global Data Grid).

Two types of copies are considered: local copy, hosted by

the LDG and global copy, hosted by the GDG. When a client

accesses the data, a request to acquire the synchronization

object is addressed to the node hosting the local copy. If the

node owns the synchronization object, the client is served.

Otherwise, an acquisition request is sent to the node hosting

the global copy.

To avoid the problem of storage data in grids, the

consistency model proposed in [9] improved the storage space

and access time of replicated data. The authors of this work

suggest a topology built hierarchically upon three types of

nodes: Super Node (SN), Master Node (MN), and Child Node

(CN). The source of the replicated data is kept in the SN; this

data can then be modified by users of the grid, called "original

data". When the original data is added or modified, then it is

automatically replicated to the master nodes (MN). The replica

of the master node (MN) is called Master Replica. At the node

(CN), the data is replicated from the master node (MN)

according to two main factors: the file access frequency and

the storage space capacity. The replicated data is called (Child

Replica). Replicas located at (MN) and (CN) are read only.

Sarra Senhadji, Amar Kateb, Hafida Belbachir

Increasing Replica Consistency Performances with

Load Balancing Strategy in Data Grid Systems

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

147

Fig. 1 Replica distribution topology [7]

Another similar work to [7] was proposed by [6] by

considering the bandwidth consumed until the read/write

operations. Most of existing replication works [9], [10] in data

grid systems focuses on consistency management without

taking care of the load imbalance of the grid nodes which can

degrades significantly the replication performances.

Some of load balancing solution was proposed in the

literature [8], [14]. For example in [1] Quorum systems are

used. A Quorum is defined as the minimum set of nodes

owning a replica. A coterie represents a set of replicas.

Quorum protocols are characterized by two main properties

which are properties of intersection and minimality [2].

Considering two quorums of a coterie C, the property Q ∩ Q

'≠ ∅ is called intersection property and the property Q ⊈ Q' is

called the minimality property. The authors of [1] studied the

load balancing problem, by providing a coterie reconfiguration

method, to improve the read/write accesses. The load of a

quorum Q is the maximum load of the nodes of this Quorum

and the load of a coterie is equivalent to the sum of loads of its

quorums. The nodes are tree structured and a Quorum is

obtained by taking nodes of any path from the root to a leaf of

the tree. Every read (or write) operation is performed on a

Quorum of the coterie.

An elementary permutation of the coterie is performed to

obtain a new less loaded coterie. For this, two parent’s nodes

are selected to be swapped in the tree (father and its son) when

the son’s load is less than the father’s load. The main goal of

this work is to put nodes with the lightest load above the

busiest ones.

An extension of the atomic read/write service [3] is

proposed, with multiple readers and multiple writers. Two

phases are proposed: query and a propagation phase. During

the request phase, a read-quorum is contacted and each node

returns the recent version which is consequently propagated to

all the nodes of the quorum. This has the advantage that

obsoletes copies are updated even during read operations.

As load balancing for replica consistency has not been

sufficiently studied in the literature, we propose a strategy,

based on quorum for load balancing of nodes to increase

performance consistency in terms of availability, read/write

accesses and communication cost. In the next section we

present our approach.

III. PROPOSED APPROACH

In our work, we adopt a strategy of load balancing based on

quorum structure, as this provides better representation and

management of replicas. For this, we propose to represent the

grid into coteries. A coterie contains all nodes owning replicas

of the same data, structured in a binary tree. A path from the

root to the leaf node of the tree is called quorum.

To improve the data availability, for each coterie node we

define n versions. Each version is characterized by three

parameters <N, S, V>, representing respectively, the node that

creates or modified this version, the stamp which represents

the moment of the creation or the update version of the replica

and finally the value of the replica. An example is shown in

Fig. 2.

Fig. 2 Example of a coterie with versions

In this example, three versions are defined for each node of

the coterie.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

148

A. Replica Consistency Maintenance

The replica consistency is based on the write and read

protocol. A replica is updated through a write protocol and

requested through a read protocol. We define three states for a

node: Free (F), Occupied (O) and Blocked (B) as shown in

Fig. 3. A node is free if all its versions are released. A node is

occupied if it contains at least one version locked. A node is

blocked if all its versions are locked. The possible transitions

from a state to another are illustrated in Fig. 3.

Fig. 3 State of a node in a coterie

Suppose that the initial state of the node is free (F). If a

request (read/ write) is addressed to that node, the version

chosen to perform the operation is locked and the node passes

to occupied state (O). If this node receives another request

then it keeps the same state even it still has released versions,

else it transits to the blocked state (B). If the node is in a

blocked state and a version has been released, then the node

returns to an occupied state. The node returns to a free state if

all the locks of all versions are released.

Write protocol

The node N requests the write on the data D.

Contact the coterie corresponding to the data D.

If exist a « Free » node then designate a quorum containing this

node, having no blocked nodes, with minimal occupied nodes and

maximal free nodes.

Else if exist an « Occupied » node then designate a quorum

containing this node, having no blocked nodes, with minimal

occupied nodes.

Else write is hold until the release of a node. // since all nodes

of the coterie are blocked

End if

End if
// Write the designated quorum

- Lock the oldest version in writing (having the smallest

estampille).

- Perform the writing operation.

- Release the write lock.

- Propagate the written version to the nodes of the quorum.

Read protocol

The node N requests the read on the data D.

Contact the coterie corresponding to the data D.

If exist a « Free » node then designate a quorum containing this

node, having no blocked nodes, with minimal occupied nodes and

maximal free nodes.

Else if exist an « Occupied » node then designate a quorum

containing this node, having no blocked nodes, with minimal

occupied nodes.

Else write is hold until the release of a node. // since all nodes

of the coterie are blocked

End if

End if

// Read the designated quorum

- Contact all nodes of the designed quorum and get the latest

version of the replica (having the biggest estampille).

- If there is divergence between replicas then propagate the latest

version to the nodes of the quorum.

- Lock the chosen version to be red.

- Perform the reading operation.

- Release the read lock.

- Return the result read to the request node.

An example of write algorithm is illustrated in Fig. 4.

Suppose that at time t = 8, the Node B requests the write of the

data D with the value val8. The coterie corresponding to the

data D is contacted and the quorum {A, B, D} is designated

because it contains the node B, which is free. The oldest

version (A, 1, val1) is locked to be written. The chosen

version is locked to perform the writing operation. At the end

of the write, the lock is released and it propagates the update

to the quorum nodes.

Fig. 4 Write example

An example of the read algorithm is illustrated in Fig. 5.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

149

Fig. 5 Read example

At time t=8, the Node B requests the read of the data D. The

coterie corresponding to the D is contacted and the quorum

{A, B, D} is designed because it contains the node B which is

free. After, the latest version is chosen in the designed

quorum. Among the nodes of the chosen quorum, the latest

version is located in the node A (C, 7, val7). As there is a

divergence between the versions, the latest version must be

propagated to the nodes that do not contain it. The latest

version is locked to perform the reading operation. At the end

of the read, the lock is released and the latest value is return to

the request node.

B. Load Balancing Strategy

Before presenting our load balancing strategy, we precise

how the load of a coterie is estimated.

First we define the load of each node of the coterie. In our

approach, we define three load states: under loaded, medium

loaded and up loaded, having respectively the values 1, 2 and

3.

The load of a node, noted Lnode is calculated by following

the read/write access frequency. The node access frequency,

noted fanode, is incremented at each read operation and

reinitialized periodically. For this, two thresholds: famin and

famax.are defined arbitrary.

if (fanode < famin) then Lnode = 1

if (famin ≤ fanode < famax)then Lnode = 2

if (fanode ≥ famax)then Lnode = 3

The load of a Quorum, noted Lquorum, represent the

maximum load of the nodes of this quorum.

Finally, the load of a Coterie, noted Lcoterie, represents the

sum of all quorums load of this coterie.

In the following example, we assume that the nodes {A, B,

C, D and E} have got respectively the following load values

{2, 2, 3, 3, 1}.

Fig. 6 Example load

Load balancing nodes of each coterie, is performed by

following a dynamic reconfiguration of nodes of the coterie

from the root nodes to the leaf nodes (see load balancing

strategy). The purpose of this reconfiguration is to reduce the

load of quorums based on an elementary permutation between

a parent node and its two son nodes so that the load of the

father is greater than the load of its two nodes son getting a

minimal communication cost. The communication cost

represents the time of exchanges messages between two nodes

of the grid.

Thus the main objective of this reconfiguration is to involve

the least possible overloaded nodes in the construction of

quorums. In this way, we get the overloaded nodes at the

lowest level (leaf level) without degrading the performance of

consistency in terms of communication cost. This

reconfiguration is invoked periodically.

 Load balancing strategy

Input: structured coterie, load nodes of each coterie.

Output: restructured coterie.

For each coterie do

If exist node ≠ leaf and load node=3

Then

For each parent node do

If (loadparent > loadchild1) and (loadparent > loadchild2)

Then Swap (parent, childj) with minimal communication cost

Else if (loadparent > loadchild1)

 Then swap (parent, child1)

 Else if (loadparent > loadchild2)

 Then swap (parent, child2)

 End if

End if

 End if

 End if

End if

IV. EXPERIMENTATIONS

To evaluate the performances of our proposed approach, we

use the grid simulator (Gridsim toolkit 4.2) [11] under the

Load of nodes:

Nodes under loaded= {E}

Nodes medium loaded = {B}

Nodes up loaded = {C, D}

Load of quorums:

L {A, B, D} = max {2, 2, 3} = 3

L {A, B, E} = max {2, 2, 1} = 2

L {A, C} = max {2, 3} = 3

Load of coterie:

L {A, B, D} + L {A, B, E} + L {A, C} = 8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

150

operating system (Windows XP 7). We defined different

number of grid nodes. We replicate arbitrary 10 data into 5

versions over the nodes of the grid. We fixed the number of

R/W transactions to 10000.

In order to estimate the load of a node, we define two

thresholds famin and famax by following the number of nodes

and transactions. We approximate the

transactions/ number of nodes). To consider the upload state

of a node, we approximate the famax to fa

Table I.

TABLE I

SIMULATION PARAMETERS

Data= 10, # Version=5, #Transactions=10000

Nodes
50 100 400 800 1000 2000

Famin 200 100 25 13 10 5

Famax 205 105 30 18 15 10

In order to study the consistency results, we assume that a

replica is consistent if its latest version corresponds to the

latest written value. Thus, the consistency of a data D

represents the rate of the consistent replicas

consistency of a data D is calculated as below:

�������	�
��

 number of nodes hosting consistent replicas

number of nodes hosting replicas of the

We note that the consistency reduces when the

nodes increases, this is explained by the fact that when there is

a lot of write operations (in our experimentations we fix it to

10000 R/W transactions) the updates of replicas becomes

more difficult and consequently inconsistencies occur. That

why we study the freshness of replicas.

Fig. 7 Consistency& Freshness

Considering a set of replicas of the data «

Rn} where: R0 represents the first written replica and R

latest written replica. The freshness margin of a replica R

equal to n-i. A replica is assumed to be «

freshness margin is lower than n/2. The freshness of a data D

is calculated as below:

operating system (Windows XP 7). We defined different

number of grid nodes. We replicate arbitrary 10 data into 5

e fixed the number of

In order to estimate the load of a node, we define two

by following the number of nodes

and transactions. We approximate the famin to (number

nsider the upload state

famin+5 as shown in

ARAMETERS

Data= 10, # Version=5, #Transactions=10000

 3000 5000 10000

4 2 1

9 7 6

In order to study the consistency results, we assume that a

replica is consistent if its latest version corresponds to the

latest written value. Thus, the consistency of a data D

represents the rate of the consistent replicas of the data D. the

consistency of a data D is calculated as below:

 of the data « D »

the data « D »
$ 100

We note that the consistency reduces when the number of

nodes increases, this is explained by the fact that when there is

a lot of write operations (in our experimentations we fix it to

10000 R/W transactions) the updates of replicas becomes

more difficult and consequently inconsistencies occur. That is

Consistency& Freshness

Considering a set of replicas of the data « D » = {R0, R1…

represents the first written replica and Rn the

latest written replica. The freshness margin of a replica Ri is

i. A replica is assumed to be « fresh » if its

freshness margin is lower than n/2. The freshness of a data D

'(�)�	���

 number of nodes hosting fresh

number of nodes hosting the

In fact, the experimentation results show that the system

holds fresh replicas.

Moreover, the average load of the coteries of replicated data

(see Fig. 8 (a)) is balanced by using our reconfiguration

strategy with taking care of reducing the communication cost

between nodes (see Fig. 8 (b)

Fig. 8 Load balancing results

V. CONCLUSION

In this paper we presented our

consistency through a dynamic load balancing strategy.

use of a structured tree (coterie) allows a better logical

organization of the grid nodes hosting a set of replicas. The

definition of multiple versions of a replica can serve as many

grid users as available versions and with a certain degree of

similarity with the last update of the replicated data.

structure ensures the existence at any time of the latest version

of the replicated data. This is explained by the fact that the

root node always has the latest version. Indeed, during a read /

write operation, the latest version is always propagated to the

quorum nodes designated for reading / writing. As a quorum is

fresh replicas of the data « D »

the replicas of the data « D »
$ 100

In fact, the experimentation results show that the system

Moreover, the average load of the coteries of replicated data

s balanced by using our reconfiguration

strategy with taking care of reducing the communication cost

)).

(a)

(b)

Load balancing results

ONCLUSION

In this paper we presented our contribution of replica

rough a dynamic load balancing strategy. The

use of a structured tree (coterie) allows a better logical

organization of the grid nodes hosting a set of replicas. The

definition of multiple versions of a replica can serve as many

versions and with a certain degree of

similarity with the last update of the replicated data. Quorum

structure ensures the existence at any time of the latest version

of the replicated data. This is explained by the fact that the

latest version. Indeed, during a read /

write operation, the latest version is always propagated to the

quorum nodes designated for reading / writing. As a quorum is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

151

built from the root to a leaf of the tree, then the root node

participates in any designed quorum.

The consistency between replicas is not strong in our work

in order to serve a maximum of read request. Despite this

divergence between copies, the freshness of replicas is assured

in our work.

Reconfiguration of the coterie provides better load

balancing to increase access performance. The obtained results

of our approach reveal that the consistency management of

replicas is balanced dynamically following the state of each

node of the coterie.

REFERENCES

[1] Ivan Frain, Jean-Paul Bahsoun, Abdelaziz M’zoughi , « Reconfiguration

Dynamique de Coterie Structurée en arbre », Institut de Recherche en

Informatique de Toulouse, projet RNTL ViSaGe, acte CDUR 2005
[2] Hector Garcia-Molina and Daniel Barabara. «How to assign votes in a

distributed system». Journal of the ACM, 32(4):841–860, October 1985.

[3] N. A. Lynch and A. A. Shvartsman. «Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts ». In FTCS
’97: Proceedings of the 27th International Symposium on Fault-Tolerant

Computing (FTCS ’97). IEEE Computer Society, 1997.
[4] Sébastien Monnet, « Gestion des données dans les grilles de calcul :

support pour la tolérance aux fautes et la cohérence des données »,

l'université de rennes 1, Thèse de doctorat 2006.
[5] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. «Scope consistency: A

bridge between release consistency and entry consistency». In

Proceedings of the 8th ACM Annual Symposium on Parallel Algorithms
and Architectures (SPAA '96), pages 277.287, Padova, Italy, June 1996.

[6] Changqin Huang, Fuyin Xu, and Xiaoyong Hu, «Massive Data Oriented

Replication Algorithms for Consistency Maintenance in Data Grids»,
Part I, LNCS 3991, pp. 838 – 841, 2006.

[7] Chao-Tung Yang Wen-Chi Tsai Tsui-Ting Chen Ching-Hsien Hsu. «A

One-way File Replica Consistency Model in Data Grids», Tunghai
University, Taiwan. IEEE Asia-Pacific Services Computing Conference

2007.

[8] «Load Balancing and Replication», Chapter in Springer-Verlag Berlin
Heidelberg 2010.

[9] Cécile Le Pape and Stéphane Gançarski, « Replica Refresh Strategies in

a Database Cluster ». LIP6, LNCS 4395, pp. 679–691, 2007.
[10] Hartmut Kaiser, Kathrin Kirsch, and Andre erzky, «Versioning and

Consistency in Replica Systems», LNCS 4331, pp. 618–627, 2006.
[11] R. Buyya and M. Murshed,«GridSim: a toolkit for the modeling and

simulation of Distributed resource management and scheduling for grid

computing».. Concurrency computat: pract. Exper., 2002
[12] Distributed Computation Laboratory, « replication consistency models»,

8 april 2008.

[13] H. Guo and al. «Relaxed currency and consistency: How to say good
enough in sql». In ACM SIGMOD int. conf., 2004.

[14] James J. (Jong Hyuk) Park et al. «Data Consistency for Self-acting Load

Balancing of Parallel File System». ITCS & STA 2012, LNEE 180, pp.
135–143, DOI: 10.1007/978-94-007-5082-1_18.

[15] Saito, Y., Shapiro, M. «Optimistic replication. Comput. Surveys» 37(1),

42–81. 2005

Sarra SENHADJI, 18- 06- 1987, Algeria. Master in computer science in

2009. Phd student since 2009 at the University of Science and Technology of

Oran, Algeria. Interest in data mining, data replication and data grid.

Amar KATEB, Magister in computer science in 2013 at the University of

Science and Technology of Oran, Algeria.

Professor Hafida BELBACHIR, department of computing, USTO, BP 1505
El M’Nouer, Oran, Algeria. E-mail: h_balbach@yahoo.fr. PhD in computer
science in 1990. Interest in advanced databases, data mining and data grid.

Prof. BELBACHIR is the head of the database System Group of Signal,

Systems and Data Laboratory.

