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Abstract—In the present paper, increasing of energy efficiency of 

a thrust hybrid bearing with a central feeding chamber is considered. 
The mathematical model was developed to determine the pressure 
distribution and the reaction forces, based on the Reynolds equation 
and static characteristics’ equations. The boundary problem of 
pressure distribution calculation was solved using the method of 
finite differences. For various types of lubricants, geometry and 
operational characteristics, axial gaps can be determined, where the 
minimal friction coefficient is provided. The next part of the study 
considers the application of servovalves in order to maintain the 
desired position of the rotor. The report features the calculation 
results and the analysis of the influence of the operational and 
geometric parameters on the energy efficiency of mechatronic fluid-
film bearings. 
 

Keywords—Active bearings, energy efficiency, mathematical 
model, mechatronics, thrust multipad bearing.  

I. INTRODUCTION 

RADITIONAL fluid-film bearings are developed to work 
in a narrow range of operational parameters. However, to 

use this type of bearings under complex conditions, e.g. 
frequent launches and stops, changing load, etc., it is 
necessary to introduce new elements to the rotor system. 
Caused by the development both in software and in hardware, 
the application of active fluid-film bearings presently is an 
object of research in the directions of optimization and design 
on such bearings, study on new control algorithms and new 
control devices.  

To estimate the feasibility of using the active bearings in the 
rotor machines, one has to consider the developed bearings 
and the results of their application. It is also necessary to 
remember that the use of hydro- or aerostatic bearings is not 
always dictated by the necessity of minimizing the rotor 
vibrations. The character of friction in such bearings allows to 
obtain a long life-time expectancy, as the mechanical contact 
between surfaces is eliminated. However, the density of the 
lubricant often sets severe limitations on the area of 
applications of such bearings, due to the possibility of 
unacceptable amplitudes of vibrations. Nevertheless, to a 
certain extent active fluid-film bearings appear to be more 
effective than traditional ones, and with an adequate control 
algorithm, they can significantly decrease the unwanted 
vibrations. 
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In 1989, Ulbrich and Althaus [1] carried out the 
experimental study on the active bearing with so-called tilting 
pads, which allowed to control the wedge effect, which 
significantly increased the load capacity of the bearing. The 
research was continued by Fürst [2]. The idea went basic for 
the articles [3] and [4], and the use of actuators for such 
bearings was considered in [5] and [6]. The separation of the 
actuators to control each element independently was 
theoretically studied in [6], where it is shown that with such 
approach the damping and the stiffness of the bearing could be 
adjusted, which was experimentally studied in [7].  

The idea of radial lubricant supply was introduced in 1994 
at IUTAM conference and was published in [8]. It showed the 
method of pressure distribution calculation for hydrostatic and 
hydrodynamic bearings, which was a beginning of an active 
lubrication research. The combination of hydrostatics and 
hydrodynamics was considered in [9], [10], where the pressure 
is controlled with the use of servovalves. In the majority of 
cases, the behavior of the rotor is significantly increased when 
the active bearings are used. In [10] the thrust bearings are 
studied, where the lubricant is supplied in the axial direction 
which matches the direction of the load. The control is 
implemented with servovalves and the modeling was based on 
Reynolds equation and the flow balance. 

The undeniable fact is that the development in the field of 
mechatronic bearings is caused partly by the development of 
the control systems, namely the DAQ devices, and partly by 
the development of the control algorithms. The development 
of software makes it possible to develop complex algorithms, 
which causes the more complex hardware development. 
Artificial intelligence, fuzzy logic methods and neural 
networks, shape recognition, etc. – all these can be used to 
design the mechatronic bearings for the high-speed rotors. 
Application of such technologies has already begun in the 
field of magnetic bearings as shown in [11]. 

With the developments in the field of manufacturing of 
such bearings and in the areas, where such bearings are used, 
come greater requirements. As well as parts of other machines 
and machines themselves, fluid-film bearings are always 
restricted in terms of size and weight; moreover, the 
developers need to account one of the most crucial 
characteristics of a machine, namely, its energy efficiency.  

II. CONCEPTUAL MODEL 

Application of active fluid-film bearings provides not only 
accurate diagnostics using modern hardware tools, but also 
generally extends the functionality of the machine part. Fig. 1 
illustrates the conceptual model of a test rig designed to study 
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