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Incident Shock Wave Interaction with an
Axisymmetric Cone Body Placed in Shock Tube

Rabah Haoui

Abstract—This work presents a numerical simulation of the
interaction of an incident shock wave propagates from the left to the
right with a cone placed in a tube at shock. The Mathematical model
is based on a non stationary, viscous and axisymmetric flow. The
Discretization of the Navier-stokes equations is carried out by the
finite volume method in the integral form along with the Flux Vector
Splitting method of Van Leer. Here, adequate combination of time
stepping parameter, CFL coefficient and mesh size level is selected to
ensure numerical convergence. The numerical simulation considers a
shock tube filled with air. The incident shock wave propagates to the
right with a determined Mach number and crosses the cone by
leaving behind it a stationary detached shock wave in front of the
nose cone. This type of interaction is observed according to the time
of flow. 02122367929
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body, shock wave

I. INTRODUCTION

HE conventional shock tube consists of a duct of constant

cross-section separated by a diaphragm into a high
pressure or driver section and a low pressure or driven section
(fig. 1). When the diaphragm is ruptured, a shock wave is
generated which propagates into the low pressure region,
accelerating the gas and raising its temperature.
Simultaneously an expansion wave propagates into the high
pressure region, accelerating the driver gas into the driven
section. The flow regions induced behind these waves are
separated by an interface or contact surface across which the
pressure and velocity are equal, whilst the density and
temperature are in general different. Between the incident
shock wave and the interface there exists a short duration of
compressed quasi-steady flow and heated gas which is
available for test purposes. The theory and operation of shock
tubes have been well reported in the literature theory Shapiro
[1] and therefore not detailed here.

With an unsteady scheme, the flow inside the tube shock
(fig.2) is simulated by presenting a diagram(x[m], t[ms]). On
the figure of right-hand side which represents contours of
pressure, one observes the incident shock wave which
propagates on the right with a constant supersonic speed then
it is reflected on the bottom of the tube shock. Expansion
waves propagate on the left in the driven tube and then are
reflected on the wall. The smoothness of curves provides a
mean to prove the precision of calculations and the
consistency of our code. The figure of left represents the
density contours of gas. The separation surface is observed
between the incident shock wave and the expansion waves.
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Fig. 1 shock tube
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Fig. 2 Incident wave in tube shock

The problem to be treated is illustrated in Fig. 3. A plan
shock wave with the Mach number Mg = 3 propagates from
left to right and interacts with a cone whose axis is
perpendicular to the shock wave front. The cone’s half-angle
is equal to 43°.

The gas in front of the incident shock wave is at rest with
pressure of 2 KPa and a temperature of 293 K. After the
shock occurs, State 2 is determined by the laws of the moving

normal shock wave. We have, M, =1 .36P, =0 .2bars

and T, = 804K. The incident shock crosses the axisymmetric
cone placed in the shock tube and at the same time a detached
shock wave is formed before the cone as the incidental shock
moves on the right. Then, States 1 and 2 constitute the initial
solution of the problem. The numerical simulation is
performed using the Navier-Stokes equations. The cone’s
surface is supposed to be ideally smooth.
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Fig. 3 Problem scheme

1348



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:7, 2012

II.GOVERNING OF EQUATIONS

For a Newtonian fluid, the viscous stresses are proportional
to the rates of deformation. The three-dimensional form of
Newton’s law of viscosity for compressible flows involves
two constants of proportionality: the first dynamic viscosity, u
to relate stresses to linear deformations, and the second
viscosity, 4 to relate stresses to the volumetric deformation.

Not much is known about the second viscosity 4, because

its effect is small in practice (usually, A = —§ u Schlichting
[2] for gases).

The Navier-stokes equations in a flux-vector form under a
Cartesian coordinate system are given by

aw | 9E | 9F | 9G
2t Tox 5 + % 0 (1)
Where the vectors W, E, F and G are given by
p
pu
wW=| pv
pw
pe

pu
puz TP~ Tux
E = pUV — Ty,
PUW — Ty,
(pe + p)u T UTxx — Vlxy — Wiy, +dx
pv
PUV — Ty,
F = pr*:4+p—1y,
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(pe + p)v — utyy, — VT, —WTy, + q,

pw
PUW — Tyy
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pWZ TP =Ty
(pe + p)W —UTyz — VTyz —WTz t 4,

The heat flux vector q has three components gy, g, and q,
given by the Fourier’s law of heat conduction relates the heat

flux to the local temperature gradient. So
ar aT

A =—k32, @y =—k7>, qz=—k3—: @)
Where k denotes the coefficient of thermal conductivity, it is
function of Prandtl number, viscosity and specific heat.
k = Cp.u/Pr 3)
The energy per unit of mass e is defined as the sum of the
internal energy and the kinetic energy as

e =c,,T+§(uZ+v2 + w?) “

III. AXISYMMETRIC FORMULATION

We do not lose general information by seeking the solution
at the points of an infinitely small domain. A method
developed within the Sinus project of the INRIA Sophia-
Antipolis, Goudjo and Désidéri [3] makes it possible to pass

from 3D to 2D axisymmetric by using a technique known as
disturbance of domain. In the present work, and taking
advantage of such simplification, our 3D model is considered
axisymmetric (see details. in haoui [4]).

Iv. DISCRETIZATION IN TIME

The present numerical method is based on an explicit
approach in time and space. The step of time At is such as:

At;j = min [(ﬁ;%) , (%)] (5)

The CFL (Courant, Friedrich, Lewis) is a stability factor
Hoffmann [5]. V is the velocity of the flow and a is the speed
of sound. Ax is the small length of the mesh at the same point
(W)

The choice of the grid plays an important role in
determining in the convergence of calculations. Therefore, it
is indeed advisable to have sufficiently refine meshes at the
places where the gradients of the flow parameters are
significantly large haoui [4].

V.DECOMPOSITION OF VAN-LEER

In this study, the decomposition of Van-Leer [6] is
selected, namely a decomposition of flows in two parts f;;;
and f;; .This decomposition must apply to the present two-
dimensional problem by calculating the flow within each
interface between two cells. Moreover, through the interface,
the normal direction is paramount, thus, a change of reference
mark is applied to place in the reference mark of the interface
and its normal by the intermediary of a rotation R. This
decomposition technique has been throughly and successfully
tested for a supersonic flow around a blunt body, haoui [10].

Moreover, at each interface (i +1/2), two neighbor
states (i) and (i + 1) are known. Thus, one can calculate the
one-dimensional flow F through the interface, total flow
f(W,n) being deduced from F by applying the opposite
rotation, as:

fw, i) = IFll. R-L(F(WF)) (6)

This property makes it possible to use only one component
of flow f (F for example) to define the decomposition of
flow in two dimensions. Moreover, this method is much easy
and simple to implement than the decomposition of flow in
two dimensions f = Fn, + Gn,,.

Similarly, the expressions of Fj, (W) and F;,(WR),
where WZE is defined as the transform of W by rotation R,
see haoui [4,8 and10].

VI.BOUNDARY CONDITIONS

Open (far field) boundary conditions are the most
challenging numerical problem encountered in developing
general CFD codes. CFD problems are defined in terms of
initial and boundary conditions, and thus it is important to
specify these correctly and understand their role in the
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numerical algorithm. In transient problems, the initial values
of all the flow variables need to be specified at all solution
points in the flow domain. Since this involves no special
measures other than initializing the appropriate data arrays we
do not need to discuss this topic further. The present work
describes the implementation of the most common boundary
conditions in the discredited equations of the finite volume
method, namely: inlet, outlet, wall and symmetry axis.

A.  Inlet boundary conditions
At the inlet the pressure and temperature are fixed, they are
the flow parameters behind the incidental shock wave setting.

B.  Body surface

The no-slip condition for the velocity is usually used at the
body surface, cone and tube. The temperature gradient at the
wall is zero, in accordance with the Fourier equation of heat
conduction in the y-direction together with the assumption of
zero heat flux at the wall. In the present study, the temperature
at the wall is not very different of the stagnation temperature
of free stream. The wall shear stress is calculated by:

v

w=n(3r) (M)

Here we assume that the coordinate of the unit vector t is in
the direction of the shear force at the wall and the unit vector
n is normal at t, Ferziger [7].

C.  Axis of symmetry

The conditions of symmetry at the boundary are: (i) no flow
across the boundary and (ii)) no scalar flux across the
boundary.

D. Outlet boundary conditions

At the exit of the computational domain, the flow
parameters are extrapolated from the interior values, let us
note that the shock wave does not have attaint yet the exit of
the field and state 1 is always maintained.

VIL.RESULTS AND INTERPRETATIONS

A flow around an axisymmetric cone body placed in tube
shock is used as a benchmark. The figure 4 shows the domain
of calculation with a grid of (117 x 21). Note that our
calculations are based on a grid of (1481 x 252), as numerical
accuracy is related to the choice of the grid size haoui [9, 10].
The gas used is the fresh air. The initial solution is established
with state 1 and state 2 separate at x; = —24mm. Figure 5
shows the evolution of the Mach contours in function of time.

At t =0, an incident shock wave is propagated with a
Mach number Mg = 3. Note that at t = 2us, the shock wave
is already advanced, as expected with the formation of the
boundary layer near the wall of shock tube.

When t = 5us, the shock reaches the nose of the cone,
whilst the flow behind the shock is supersonic of which the
Mach number is equal to 1.36.

" grid(117 x 21)
g half-angle = 43°

0,00 0,02 0,04 0,06 008 0,10 0,12 0,14
x(m)

Fig. 4 Computational domain

At t = 10us, the shock starts to cross the cone, one
observes near the wall of the cone the formation of a new
shock wave, round-off, connected to the incident shock. The
boundary layer continues to form on the wall of the shock
tube. Att = 15us, the incident shock advances and a detached
shock starts to form. It is clear at t = 20us; the incident
shock wave remains normal since the flow before and after is
one-dimensional. At t = 25us, the shock has reached the
convex part of the cone. The detached shock becomes more
apparent and a two-dimensional flow takes place between the
detached shock and the cone with the presence of a boundary
layer on the wall of the cone.

At t = 30 us, expansion waves start to be formed on the
convex part of the cone body while a depression takes place
delaying the incident shock wave.

When t = 40us , the detached shock wave becomes
dominant, the flow between the deformed incident shock and
the detached shock is completely two-dimensional. At t =
60us, the detached shock wave interacts with the boundary
layer on the wall of the shock tube, causing its reflection.
Finally, at t =90us, the detached shock wave becomes
stationary, with a determined position at x; = —3mm. The
incident shock continues to move on the right without
disturbing the detached shock wave. One can also observe the
formation of a shock lambda (A) to the position where the
interaction of the detached shock wave and the boundary layer
on the wall of the shock tube takes place.
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Fig. 5 Flow evolution

A detailed analysis at t = 20us of figure (fig. 6) shows
clearly how the incident shock propagates in the shock tube
while crossing the cone. Moreover, the figure also depicts the
formation of detached shock and the presence of a boundary
layer (B.L) both on the wall of the cone and the shock tube.

Incident shock
——lp

0.03
E Formation of |
= detached shock 4
0.02 /
0.01

0.96}.01 0.00 0.010 0.02
x(m)
Fig. 6 Mach contours at t = 20us

The density distribution along the axis of symmetry and on
the wall of the cone is illustrated in (fig. 7). Before the cone
the detached shock wave is localized with at x; = —3mm,
the ratio of the density increases to 4.66, causing a fast
deceleration of the flow. The presence of the boundary layer
provokes further increase to the ratio of density to 21.4. On the
convex part of the cone, a fast falls of density and thus
pressure is observed, generating expansion waves. At the
distance x = 0.06m, an increase of density and pressure is
observed, due to the interaction of the reflected shock wave
with the boundary layer on the wall of the cone, this
interaction is depicted on the Mach contours at t = 90us
and x = 0.06m. From this station, a reduction of density is
observed when the expansion waves arrive on the wall of the
shock tube. On right-hand side, the incident shock wave
continues its propagation.
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Fig. 7 Density distribution

Figure 8 illustrates horizontal velocity profile according to
the radius, in particular at x = 0.0267m just before the
convexes part of cone body. One can clearly observe the
velocity increases from zero on the wall at y = 0,02489m to
630 m/s aty = 0,02731m, resulting in the development of
the boundary layer of & = 2.42mm thickness . The flow
remains almost uniform until the arrival of the reflected shock
wave causes a small disturbance aty = 42.8mm. Thus the
velocity decreases rapidly in the boundary layer on the wall of
the shock tube until where it is cancelled.
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Fig. 8 Velocity profile at x = 26.7mm

VIII. CONCLUSION

The study of the flow in a tube at shock with conical shape
is undertaken as a benchmark to expose the accuracy of the
computational modeling of Navier-stokes equations in
capturing the physics of such flow. The numerical simulation
was able to capture the incident shock wave at beginning in a
form of a surface of discontinuity propagating a supersonic
speed, through the correct setting of the boundary conditions.
The boundary layer itself was well captured near the walls
with respect to the mesh size used. From view physical point,
the phenomenon of the incident shock wave interaction with
the cone body in the shock tube is well identified, as the
incidental shock wave moves on the right, the stationary
detached shock wave is formed in front of the cone during a
time higher than 90us. The present model was precisely able
to mimic this phenomenon observed in experimental trials.

(1

[2]

B3]

[4]

[3]

(6]
(7

(8]

[

[10]

REFERENCES

A.H. Shapiro, The Dynamics and Thermodynamics of Compressible
fluid flow, The Ronald Press Company, New York, Volume II, 1954, pp.
664.

H. Schlichting, Boundary-layer theory, 7" edition, McGraw-Hill, New
York, 1979.

Goudjo, J.A. Désidéri, a finite volume scheme to resolution an
axisymmetric Euler equations (Un schéma de volumes finis décentré
pour la résolution des équations d’Euler en axisymétrique), Research
report INRIA 1005, 1989.

R. Haoui, “Effect of mesh size on the viscous flow parameters of an
axisymmetric nozzle,” International Journal of Aeronautical and space
Sciences, vol.12(2), 2011, pp. 127-133.

K. A. Hoffmann, Computational fluid dynamics for engineers, Volume
II. Chapter 14, Engineering Education system, Wichita, USA, pp.202-
235, 1995.

B. Van Leer, “Flux Vector Splitting for the Euler Equations,” Lecture
Notes in Physics. 170, 1982, pp. 507-512.

J.H. Ferziger & all, Computational Methods for Fluid Dynamics,
Chapter 8, Springer-Verlag, Berlin Heidelberg, New York, 2002,
pp.217-259,.

R. Haoui, “Physico-chemical state of the air at the stagnation point
during the atmospheric reentry of a spacecraft,” Acta astronautica,
vol.68,2011, pp.1660-1668.

R. Haoui, A. Gahmousse, D. Zeitoun, “Condition of convergence
applied to an axisymmetric reactive flow,” 16th CFM, n°738, Nice,
France, 2003.

R. Haoui, “Finite volumes analysis of a supersonic non-equilibrium flow
around the axisymmetric blunt body,” International Journal of
Aeronautical and space Sciences, vol.11(2), 2010, pp. 59-68.

1352



