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II.GOVERNING OF EQUATIONS

For a Newtonian fluid, the viscous stresses are proportional 
to the rates of deformation. The three-dimensional form of 
Newton’s law of viscosity for compressible flows involves 
two constants of proportionality: the first dynamic viscosity,
to relate stresses to linear deformations, and the second 
viscosity,  to relate stresses to the volumetric deformation.  

Not much is known about the second viscosity , because 
its effect is small in practice (usually,  Schlichting 
[2] for gases).  

The Navier-stokes equations in a flux-vector form under a 
Cartesian coordinate system are given by 

                (1)

Where the vectors  and  are given by 

 The heat flux vector  has three components ,  and 
given by the Fourier’s law of heat conduction relates the heat 
flux to the local temperature gradient. So 

        (2) 
Where  denotes the coefficient of thermal conductivity, it is 
function of Prandtl number, viscosity and specific heat.  

        (3) 
The energy per unit of mass  is defined as the sum of the 
internal energy and the kinetic energy as 

      (4) 

III. AXISYMMETRIC FORMULATION

We do not lose general information by seeking the solution 
at the points of an infinitely small domain.  A method 
developed within the Sinus project of the INRIA Sophia-
Antipolis, Goudjo and Désidéri [3] makes it possible to pass 

from 3D to 2D axisymmetric by using a technique known as 
disturbance of domain. In the present work, and taking 
advantage of such simplification, our 3D model is considered 
axisymmetric (see details. in haoui [4]).

IV. DISCRETIZATION IN TIME

The present numerical method is based on an explicit 
approach in time and space.  The step of time t is such as: 

       (5) 

The CFL (Courant, Friedrich, Lewis) is a stability factor 
Hoffmann [5]. V is the velocity of the flow and  is the speed 
of sound.  is the small length of the mesh at the same point 
(i, j). 

The choice of the grid plays an important role in 
determining in the convergence of calculations.  Therefore, it 
is indeed advisable to have sufficiently refine meshes at the 
places where the gradients of the flow parameters are 
significantly large haoui [4]. 

V.DECOMPOSITION OF VAN-LEER

In this study, the decomposition of  Van-Leer [6] is 
selected, namely a decomposition of flows in two parts   
and   .This decomposition must apply to the present two-
dimensional problem by calculating the flow within each 
interface between two cells. Moreover, through the interface, 
the normal  direction is paramount, thus, a change of reference 
mark is applied to place in the reference mark of the interface 
and its normal by the intermediary of a rotation R. This 
decomposition technique has been throughly and successfully 
tested for a supersonic flow around a blunt body, haoui [10].

Moreover, at each interface ,  two  neighbor 
states  and   are known. Thus, one can calculate the 
one-dimensional flow  F  through the interface, total flow 

 being deduced from   F  by applying the opposite 
rotation, as:   

     (6) 

This property makes it possible to use only one component 
of  flow f (F  for example) to define  the decomposition of 
flow in two dimensions.  Moreover, this method is  much easy 
and simple to implement than the decomposition of flow  in 
two dimensions  .

Similarly, the expressions of  and  ,
where  is defined as the transform of W  by rotation R,
see haoui [4,8 and10]. 

VI.BOUNDARY CONDITIONS

Open (far field) boundary conditions are the most 
challenging numerical problem encountered in developing 
general CFD codes. CFD problems are defined in terms of 
initial and boundary conditions, and thus it is important to 
specify these correctly and understand their role in the 
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numerical algorithm. In transient problems, the initial values 
of all the flow variables need to be specified at all solution 
points in the flow domain. Since this involves no special 
measures other than initializing the appropriate data arrays we 
do not need to discuss this topic further. The present work 
describes the implementation of the most common boundary 
conditions in the discredited equations of the finite volume 
method, namely: inlet, outlet, wall and symmetry axis. 

A.  Inlet boundary conditions 
At the inlet the pressure and temperature are fixed, they are 

the flow parameters behind the incidental shock wave setting. 

B.  Body surface 
The no-slip condition for the velocity is usually used at the 

body surface, cone and tube. The temperature gradient at the 
wall is zero, in accordance with the Fourier equation of heat 
conduction in the y-direction together with the assumption of 
zero heat flux at the wall. In the present study, the temperature 
at the wall is not very different of the stagnation temperature 
of free stream. The wall shear stress is calculated by: 

       (7) 

Here we assume that the coordinate of the unit vector  is in 
the direction of the shear force at the wall and the unit vector  

 is normal at , Ferziger [7]. 

C.  Axis of symmetry  
The conditions of symmetry at the boundary are: (i) no flow 

across the boundary and (ii) no scalar flux across the 
boundary.  

D. Outlet boundary conditions 
At the exit of the computational domain, the flow 

parameters are extrapolated from the interior values, let us 
note that the shock wave does not have attaint yet the exit of 
the field and state 1 is always maintained. 

VII.RESULTS AND INTERPRETATIONS

A flow around an axisymmetric cone body placed in tube 
shock is used as a benchmark. The figure 4 shows the domain 
of calculation with a grid of (117 x 21). Note that  our 
calculations are based on a grid of (1481 x 252), as numerical 
accuracy is related to the choice of the grid size haoui [9, 10]. 
The gas used is the fresh air. The initial solution is established 
with state 1 and state 2 separate at . Figure 5 
shows the evolution of the Mach contours in function of time.  

At , an incident shock wave is propagated with a 
Mach number . Note that at , the shock wave 
is already advanced, as expected with the formation of the 
boundary layer near the wall of shock tube.  

When , the shock reaches the nose of the cone, 
whilst the flow behind the shock is supersonic of which the 
Mach number is equal to 1.36.   

Fig. 4 Computational domain 

At , the shock starts to cross the cone, one 
observes near the wall of the cone the formation of a new 
shock wave, round-off, connected to the incident shock. The 
boundary layer continues to form on the wall of the shock 
tube. At , the incident shock advances and a detached 
shock starts to form. It is clear at ; the incident 
shock wave remains normal since the flow before and after is 
one-dimensional. At , the shock has reached the 
convex part of the cone.  The detached shock becomes more 
apparent and a two-dimensional flow takes place between the 
detached shock and the cone with the presence of a boundary 
layer on the wall of the cone. 

At , expansion waves start to be formed on the 
convex part of the cone body while a depression takes place 
delaying the incident shock wave.  

When , the detached shock wave becomes 
dominant, the flow between the deformed incident shock and 
the detached shock is completely two-dimensional. At

, the detached shock wave interacts with the boundary 
layer on the wall of the shock tube, causing its reflection.  
Finally, at , the detached shock wave becomes 
stationary, with a determined position at . The 
incident shock continues to move on the right without 
disturbing the detached shock wave.  One can also observe the 
formation of a shock lambda ( ) to the position where the 
interaction of the detached shock wave and the boundary layer 
on the wall of the shock tube takes place.  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:7, 2012

1351

Fig. 5 Flow evolution  

A detailed analysis at  of figure (fig. 6) shows 
clearly how the incident shock propagates in the shock tube 
while crossing the cone. Moreover, the figure also depicts the 
formation of detached shock and the presence of a boundary 
layer (B.L) both on the wall of the cone and the shock tube.  

Fig. 6 Mach contours at  

The density distribution along the axis of symmetry and on 
the wall of the cone is illustrated in (fig. 7). Before the cone 
the detached shock wave is localized with at   ,
the ratio of the density increases to 4.66, causing a fast 
deceleration of the flow. The presence of the boundary layer 
provokes further increase to the ratio of density to 21.4. On the 
convex part of the cone, a fast falls of density and thus 
pressure is observed, generating expansion waves. At the 
distance , an increase of density and  pressure is 
observed,  due to  the interaction of the reflected shock wave 
with the  boundary layer on the wall of the cone, this 
interaction is depicted on the Mach contours at 
and . From this station, a reduction of density is 
observed when the expansion waves arrive on the wall of the 
shock tube. On right-hand side, the incident shock wave 
continues its propagation. 
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Fig. 7 Density distribution 

Figure 8 illustrates horizontal velocity profile according to 
the radius, in particular at   just before the 
convexes part of cone body.  One can clearly observe the 
velocity increases from zero on the wall at   to 

 at , resulting in the development of 
the boundary layer of . The flow 
remains almost uniform until the arrival of the reflected shock 
wave causes a small disturbance at  Thus the 
velocity decreases rapidly in the boundary layer on the wall of 
the shock tube until where it is cancelled. 

Fig. 8 Velocity profile at  

VIII. CONCLUSION
The study of the flow in a tube at shock with conical shape 

is undertaken as a benchmark to expose the accuracy of the 
computational modeling of Navier-stokes equations in 
capturing the physics of such flow. The numerical simulation 
was able to capture the incident shock wave at beginning in a 
form of a surface of discontinuity propagating a supersonic 
speed, through the correct setting of the boundary conditions.  
The boundary layer itself was well captured near the walls 
with respect to the mesh size used.  From view physical point, 
the phenomenon of the incident shock wave interaction with 
the cone body in the shock tube is well identified, as the 
incidental shock wave moves on the right, the stationary 
detached shock wave is formed in front of the cone during a 
time higher than . The present model was precisely able 
to mimic this phenomenon observed in experimental trials. 
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