
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

532

Abstract—Minimizing the response time to asynchronous events

in a real-time system is an important factor in increasing the speed of
response and an interesting concept in designing equipment fast
enough for the most demanding applications. The present article will
present the results regarding the validation of the nMPRA (Multi
Pipeline Register Architecture) architecture using the FPGA Virtex-7
circuit. The nMPRA concept is a hardware processor with the
scheduler implemented at the processor level; this is done without
affecting a possible bus communication, as is the case with the other
CPU solutions. The implementation of static or dynamic scheduling
operations in hardware and the improvement of handling interrupts
and events by the real-time executive described in the present article
represent a key solution for eliminating the overhead of the operating
system functions. The nMPRA processor is capable of executing a
preemptive scheduling, using various algorithms without a software
scheduler. Therefore, we have also presented various scheduling
methods and algorithms used in scheduling the real-time tasks.

Keywords—nMPRA architecture, pipeline processor, preemptive
scheduling, real-time system.

I. INTRODUCTION

HE question of whether preemptive systems are better
than non-preemptive systems has been addressed for a

long time. Field literature has provided partial solutions, but
some issues like nondeterministic performance, scheduling
cost and inefficient power consumption are still under
discussion. Each of these solutions comes with its own
advantages and disadvantages, depending on the predictability
and efficiency of the system for which they have been
implemented [1].

The following aspects have to be taken into account when
performing an analysis of operating systems [2]; including the
scheduler we are dealing with:
1) In many practical situations, such as I/O scheduling, or

communication using shared environments, an interrupt is
hard, or even impossible, to accept. This is because
suspending the current task would cause an increase of the
cache miss effect and negatively influence the pre-fetch
mechanism, by involving an unpredictable worst-case
execution time (WCET).

2) In non-preemptive scheduling, the problems generated by

Ionel Zagan and Vasile Gheorghita Gaitan are with the Stefan cel Mare
University of Suceava, Suceava, Romania and Integrated Center for Research,
Development and Innovation in Advanced Materials, Nanotechnologies, and
Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare
University, Suceava, Romania (e-mail: zagan@eed.usv.ro,
gaitan@eed.usv.ro).

mutual exclusion are insignificant because the nature of
the scheduling algorithm guarantees the exclusive access
to shared resources. However, in preemptive scheduling,
the implementation of complex protocols specific to the
control mechanisms of shared resources is necessary in
order to guarantee access to the shared resources and
avoid priority inversion.

3) In hard real-time systems with non-preemptive
scheduling, the jitter effect is at a minimum for all system
tasks; this way, the control techniques for compensating
and diminishing the negative effects of delays are
simplified.

4) The non-preemptive implementation enables the use of
stack sharing techniques, in order to save memory space
for small embedded systems.

To discover and further pursue the research directions in the
field of single-core and multi-core SoC CPU architecture, one
needs to know if in doing so, the single-core architectures can
be optimized in order to obtain maximum efficiency in real-
time applications, as well as in those with low power
consumption. Thus, using the CPU with a superior utilization
factor, the predictable and deterministic control of a process
specific to a real-time system (RTS) can be ensured.

This paper provides a schedulability analysis of the already
existing scheduling algorithms and detailed description of the
experimental results obtained during the tests performed on
the nMPRA CPU architecture. The hardware implementation
of schedulers as coprocessors represents a novelty for real-
time systems and a true challenge in the field. The following
issues are also taken in consideration: aspects characteristic to
embedded real-time system, ensuring deterministic and
predictable control of a process, and the real-time operating
system (RTOS) characteristics and scheduling algorithms used
in critical applications.

The nMPRA architecture can be successfully used in small
applications for critical real-time and mixed-criticality
systems. This implementation includes an integrated hardware
scheduler called nHSE (Hardware Scheduler Engine for n
tasks) controlled via its dedicated instructions [3], [4]. Tasks
context switching is based on remapping the multiplied
resources, such as Program Counter, Register File and
Pipeline Registers [5]. The project has been implemented
using Vivado 2015.4 design environment and the source code
has been written in Verilog HDL.

This article is structured as follows: after a brief
introduction in Section I. Section II presents a few models for

Improving the Performances of the nMPRA
Architecture by Implementing Specific Functions in

Hardware
Ionel Zagan, Vasile Gheorghita Gaitan

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

533

the scheduling of real-time tasks, and Section III describes
briefly the nMPRA architecture. Section IV describes the
validation of the nMPRA architecture with the support of the
static nHSE scheduler by submitting the waveforms
characteristic to tasks context switching using the Virtex-7
development kit (subject of this article and the novelty for the
proposed architecture); Section V presents related work and
finally, Section VI adds the conclusions and directions for
future research.

II. NON-PREEMPTIVE AND PREEMPTIVE TASKS SCHEDULING

The present section will describe various algorithms for
real-time task scheduling. Taking into account the restrictions
for each set of tasks, each algorithm represents a scheduling
solution. The implementation of these scheduling algorithms
in hardware, increases admissibly the overall processor
throughput, mainly because nMPRA implementation allows a
very fast context switching, that is possible due to the
remapping of the active running task context with the
scheduled task; the jitter is minimized in order to provide an
accurate predictability behavior. Throughout the present
paper, each task τi is characterized by a WCET noted with Ci,
a deadline Di and period Ti. A deadline model is defined,
compelling a Di smaller or equal to Ti. For scheduling
purposes, each task τi is assigned a priority Pi, used for
selecting which of the ready for execution tasks can be
scheduled; a higher value for Pi means a higher priority of that
certain task.

A. Non-Preemptive Scheduling

By using the non-preemptive scheduling method, all context
switching is eliminated, and, moreover, the architecture
related cost coefficient decreases [1]. Under these
circumstances, each task τi can be blocked for a period of time
equal to Bi, representing the longest execution time of tasks
with lower priority.

The reduction with one unit is necessary, because the new
task has to be executed sooner with at least one unit. Taking
into account (1), for a certain set of tasks, the most affected
are the ones with high priority.

B max

:
C 1 (1)

A feasibility study for a non-preemptive set of tasks proves

difficult to perform, because it requires an analysis on a longer
period of time. Bril et al. [6] proved that in non-preemptive
scheduling, the WCET of a task may not appear in the first
part of the execution.

Because the execution of high priority tasks is delayed,
there is a scheduling anomaly called self-pushing phenomenon
that does not allow meeting the established deadlines.
Therefore, an analysis for a longer period of execution, called
Li (Level-i Active Period defined in [6]), is necessary, at least
until task τi, with priority Pi, completes execution.

Yao et al. showed in [7] that the analysis of non-preemptive
tasks can be reduced to a single job, subject to the following
conditions:

1. The task set τi is feasible under preemptive scheduling.
2. The relative deadlines Di are lower than or equal to

periods Ti.
Fig. 1 shows the scheduling without interrupts performed

by the Deadline Monotonic algorithm for the set of tasks in
Table I. It was noticed that τ3 manages to meet the deadline,
although the set of tasks cannot yet be scheduled, because τ1
does not meet the conditions. Therefore, this set of tasks
cannot be scheduled in a non-preemptive mode with none of
the Rate Monotonic algorithms (RM) or Earliest Deadline
First (EDF). Nevertheless, this scheduling scheme can be
successfully used for those sets of tasks that have little use for
the calculating unit.

TABLE I

ASSIGNING THE PREEMPTION THRESHOLDS

 Ci Ti Di Pi θi

τ1 2 7 6 3 3

τ2 3 12 10 2 3

τ3 7 22 17 1 2

Fig. 1 The non-preemptive scheduling of tasks in Table I using the
Deadline Monotonic algorithm

A main disadvantage of non-preemptive implementations is

that it introduces an additional blocking factor for high priority
tasks; nevertheless, there are many important advantages for
adopting this type of scheduling.

B. Preemptive Scheduling

Preemptive schedulers introduce fluctuations for tasks
execution times, reducing thus the predictability of the system.
In the process of designing these types of schedulers, one has
to take into consideration certain input costs introduced by [1]:
1) Scheduling – represents the time allocated to the

scheduling algorithm.
2) Pipeline – sums up the clock cycles lost by instructions

that have already been extracted and decoded, because the
assembly line has to receive the instructions of the new
task [8]; the time necessary for introducing the new task
on the assembly line; the time needed to restore the
assembly line for the interrupted task, when it resumes
execution.

3) Cache-related – represents the time necessary for loading
the cache line lost at the moment of context switching.

4) Bus-related – represents the time cycle introduced by the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

534

operations of accessing the RAM memory, due to the
cache miss effect.

The total sum of these times, or only part of them,
represents the Architecture related cost that is significantly
variable, depending on the context switching points. In
analyzing the scheduling algorithms, one needs to take into
account certain issues, such as the complexity of
implementation, the effectiveness of the scheduling scheme
[9], and the predictability of estimating the cost coefficient of
the architecture.

The Preemption Thresholds model was first proposed by
Wang and Saksena in [10]. According to this approach, each
task τi is assigned a normal priority Pi and a preemption
threshold θi ≥ Pi; the task may disable the preemptive system
up to a specific preemptive threshold θi. Therefore, a context
switch can only take place if the priority of the new task Pj is
higher than the preemptive threshold θi of the task τi. This
scheduling method represents a compromise between full
preemptive and full non-preemptive scheduling. It is a normal
situation because, if each priority threshold is considered equal
to the priority of the task, the scheduler acts as a full
preemptive; instead, if all priority thresholds are set as the
maximum priority of the system, the scheduling algorithm
becomes non-preemptive [1]. The preemption threshold is
used in order to increase the priority of the task τi during
execution. Even if task τi is interrupted by a different task with
a higher priority, the priority of the task will remain the same.
At the moment of activation, the priority of the task is the
same as its nominal priority Pi; the task is inserted into the
ready queue and waits until all tasks with higher priority Ph >
Pi are executed. At the time of execution, the task τi is
assigned the priority θi and can only be interrupted by tasks τh
with a higher priority Ph > θi. Therefore, after completing
execution, the priority of the task returns to its nominal value
Pi.

Wang and Saksena proved that by appropriately setting the
priority threshold, a good efficiency for the scheduling scheme
and higher degree of CPU utilization can be achieved [10]. For
example, by assigning the preemption thresholds θi for a set of
tasks in Table I and using the Deadline Monotonic algorithm,
a satisfying scheduling can be obtained. Thus, as can be seen
in Fig. 2, a set of tasks, impossible to schedule with non-
preemptive scheduling algorithms, can be successfully
scheduled using the preemption threshold method.

One can notice that at the time t = 7, τ1 can interrupt τ3
because P1 > θ3, and at the moment t = 12, τ2 cannot interrupt
τ3 because P2 = θ3. Because P1 > P2, task τ1 is executed at the
moment t = 14, even if the tasks τ1 and τ2 are in the READY
state and do not yet have the preemptive thresholds activated.

According to the Task Splitting model, a task τi is executed
in the non-preemptive mode, and preemptions are allowed
only in predefined points, called preemption points. Task τi is
divided in mi non-preemptive subjobs by certain well defined
algorithms, resulting mi−1 preemptive points.

If a task with high priority reaches the READY state
between two preemption points, the interruption of the current
task will occur at the next preemption point [11].

Fig. 2 Deadline Monotonic scheduling of the set of tasks in Table I
with preemptive thresholds θi

Fig. 3 Deadline Monotonic scheduling with the task splitting model
for the set of tasks in Table I

Assuming that all jobs scheduled for a certain task have the

same subjob division [1], and for each subjob kth there is a
WCET denoted by qi,k, the WCET Ci can be defined in (2).

,
(2)

In order to obtain an optimal scheduling for this model, the

following parameters are important for every task: Ci, Di, Ti,
, , where the last two are defined in (3).

∈ , , 		

, 																	

(3)

The feasibility of a high priority task τk is affected by the

length of the longest subjob of every task τj with priority

Pj < Pk. The response time is also influenced by the size
of the final subjob τi.

The feasibility analysis of a task set scheduled using the
task splitting method can be performed in a similar manner, by
using per-existing models and taking into account the
following two differences. The first difference is represented
by the period of the blocking factor Bi for each task with a
lower priority than τi (4); the second difference is represented
by the last non-preemptive period of the task τi.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

535

:
1 (4)

Using the set of tasks in Table I and assuming that τ3 is

divided in two subjobs of five and two units, the scheduling
performed using the task splitting method proves feasible, as
shown in Fig. 3.

Fig. 4 Replication of resources of the nMPRA architecture [12]. PC-
program counter, IF/ID-Instruction Fetch/Instruction Decode, ID/EX-

Instruction Decode/EXecute, EX/MEM-EXecute/MEMory,
MEM/WB-MEMory/Write Back stage

III. THE NMPRA ARCHITECTURE

The nMPRA architecture is based on remapping the
multiplexed resources. So, an instance of the CPU will be
called semi CPU (sCPUi for task i). Such a hardware instance
includes its own PC register, general purpose registers, and
pipeline registers. All sCPUi share the functional units of the
nMPRA processor, such as the control unit, the logic and
arithmetic unit, the hazard detection and data redirection unit
[12]. The nHSE unit is a finite state machine, performing the
static or dynamic scheduling of tasks, with inputs such as
interrupts, deadlines, timers, mutexes or messages. The static
scheduler is preemptive with static priorities. The dynamic
scheduler provides the possibility to set the priority for each
sCPUi which is deactivated at reset; in this case, only the
sCPU0 remains active. The priority of a sCPUi can be
changed dynamically by a dynamic scheduling algorithm,
implemented either in software, at the sCPU0 level, or in
hardware. Depending on the selected task i that runs on
sCPUi, the nHSE scheduler manages the selection of the PC
register and of the bank from the register file in the same way
as the pipeline registers and any other storage element present
in the pipeline. In the process of task context switching, the
scheduler remaps these multiplied resources in order to restore
the internal state of the data path and of the selected sCPUi
control signals, as shown in Fig. 4.

The CPU implements the MIPS instruction set [13], adding
additional instructions for the integrated scheduler nHSE.

This paper presents the results that demonstrate the
implementation of task context switching operation using the
nMPRA architecture and static nHSE defined in [4]. The static
nHSE scheduler implements the Task Splitting method
considering an nMPRA version with four sCPUi. This

represents the novelty brought by the present article.
In the next section, we presented and described

experimental results obtained from the practical
implementation of this solution, and the benefits it brings
compared to traditional processors.

IV. THE VALIDATION OF THE NMPRA PROCESSOR USING

VIRTEX-7 PLATFORM

This section demonstrates the functionality of the nHSE
scheduler by validating the context switching performed by
the Task Splitting algorithm using the FPGA
xc7vx485tffg1761-2 circuit. To implement this scheduling
model, it was necessary to extend the nHSE unit with a new
configuration register named grPrPointTS[0:3][31:0] in order
to define the preemption points for each task. This CPU
architecture with five pipeline stages has been designed and
implemented using the VC707 Evaluation Kit [14]. The
nMPRA implementation is especially designed for minimizing
the overhead generated by classical software schedulers for
reducing the jitter effect and for eliminating the
unpredictability in the case of handling asynchronous
interrupts. During a clock cycle of the five stages pipeline
nMPRA processor, the data stored in pipeline registers is
processed by the functional units of the stage in question; the
results are stored in the following pipeline registers or written
in the specific bank of the Register File, as shown in Fig. 5.

For testing the nMPRA architecture with 4 sCPUi running
at a frequency of 33MHz, it was necessary to synthesize and
implement a SoC designed on the Virtex-7 FPGA VC707
Evaluation Kit produced by Xilinx.

For validating the MIPS instructions implemented by the
nMPRA processor, the waveforms obtained from simulation
and those acquired as a result of on-chip debugging with the
ChipScope Analyzer have been pursued. The implementation
is based on the project described in [15], a 32-bit MIPS
processor which aims for conformance with the MIPS32
Release 1 ISA. The practical results presented in this section
demonstrate the validity of the theoretical approach described
in the previous chapter, so that the characteristics of the
waveforms obtained during simulation correspond to the ones
captured with the ChipScope Analyzer.

In order for the processor to interact with input/output ports,
their mapping has been performed in the workspace of the
data memory. Thus the ports corresponding to the UART
communication and to the LCD screen can be accessed, as
well as the digital inputs and outputs. In order to allow
connections to a PC using the USB port, the development kit
also contains a bridge Silicon Labs CP2103GM USB-to-
UART (U44) device [14]. In the case of implementing the
current SoC, via UART communication, the program
instructions are transmitted from a PC to FPGA on-chip
memory implemented with the IP Core Block Memory
Generator, version 8.3.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

536

Fig. 5 Multiplying the Register File of the nMPRA architecture in a RTL representation

As for the boot procedure, Fig. 6 shows the waveforms
specific to UART communication implemented by the
hardware driver, capable of receiving and sending data with a
predetermined transfer rate. Thus, using the ChipScope
Analyzer it is possible to view and inspect the contents of the
registers used for receiving MIPS instructions. For the FPGA
circuit to receive every bit, including the start and stop bit, the
oversampling mechanism has been used; therefore, the
succession of bits for receiving the 0x58 (bin 01011000) byte
could be observed. To do this, and considering the CPU's
working frequency of 33 MHz and a UART frequency of
115.2kHz, a clock signal multiplied 16 times (uart_tick_16x)
in relation to the clock signal used for the UART
communication (uart_tick) was needed [15].

In order to test the access of an FPGA pin which commands
an LED on the development platform, the signals of the
memory data in the address space have also been mapped. In
this case, the program (store instruction) performed a simple
switch of a pin configured in the .xdc constraint file.

Fig. 6 Receiving the data through the RxD line

As shown in Fig. 7, waveforms are used to check the nHSE
capacity to maintain the task contexts and to perform contexts
switches within a time frame characteristic to real-time
systems. The nMPRA architecture guarantees the execution of
the new scheduled task starting with the next clock cycle, as
we can see in Fig. 7, at the moment T6. Context remapping
occurs after the non-preemptive subjob of sCPU2, if the Task
Splitting preemptive scheduling algorithm implemented by
nHSE performs a tasks context switching dictated through the
nHSE_Task_Select[3:0] selector. This signal, along with those
referenced in the following description, can be found in Fig. 7.
Assuming that task 2 executed on sCPU2 semi processor is
divided in two non-preemptive subjobs (14 and 6 clock cycles)
by a certain well defined algorithm, one preemptive point will
result, indicated by the T6 moment. The operation may,
however, be delayed up to three clock cycles in case it is
desirable that the active sCPUi completes the execution of the
sw instruction, already present on the stages of the pipeline
assembly line [16]. This instruction can be used both for inter-
task synchronization and communication mechanisms and for
accessing mapped ports in address spaces. We remind that all
sCPUi share the same functional units, such as ALU, the
control unit, the condition unit, the unit for hazard detection,
and the redirection of data unit, so that the data path must
guarantee the hardware isolation and the consistency of sCPUi
contexts [4]. In comparison to the theoretical version, in the
CPU validation version, two clock signals have been used, one
for the pipeline registers (the internal logic of the scheduler)
and for handling asynchronous external interrupts, and one for
data and instruction memory. In order to synchronize with the
program memory implemented on-chip, the clock_mem clock
signal dedicated to memory runs at a high CPU frequency, and
the signals for reading MIPS instructions from memory are
modified on both fronts of the clock_mem clock.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

537

Fig. 7 The sCPU2 and sCPU1 context switching operation based on Task Splitting model in relation with the assigned activation signal
ExtIntEv[1]; clock_200MHzP, clock_200MHzN - 200MHz differential signal clock; clock - nMPRA clock; addra, addrb - memory addresses;
rea, wea, reb, web - Read/Write operation request; dreadya, dreadyb - data ready signals; nHSE_EN_sCPUi - nHSE enable signal; nHSE_Task

_Select[3:0] - nHSE task selector; ID_Instruction[31:0] - wire type instruction; ID_Instruction_reg[0:3][31:0] - reg type sCPUi instruction

Fig. 7 shows the clock_200MHzP and clock_200MHzN
clock signals which represent the 200MHz differential signal
available at the output of the SIT9102 oscillator and the clock
signal of the nMPRA processor (clock) generated through the
PLL block obtained with IP Clockind Wizard 5.2 (Rev. 1).

The waveforms corresponding to the Instruction[31:0],
ID_Instruction[31:0] and nHSE_Task_Select[3:0] signals are
also represented. The latter selects the PC, the bank from the
Register File and the pipeline registers corresponding to each
sCPUi. The addra and addrb signals are outputs of the
memory controller that indicates the memory addresses
accessed by the next transfer. These addresses are valid only
when the rea, wea, reb and web signals are set to logic value
1. All operation on the data bus are synchronous with the CPU
clock, the dreadya and dreadyb signals representing CPU
inputs that indicate the completion of the current transfer; the
following transfer can thus begin once with the next clock
cycle.In a four sCPUi version as the one used for obtaining the
waveforms in the present article, we can observe the
ID_Instruction_reg[0:3][31:0] pipeline register containing, at a
certain moment, the code for the instructions extracted for
each sCPUi. At the T1 moment, the
ID_Instruction_reg[2][31:0] register contains the 0x00431020
instruction, and at the T2 moment, the 0x00431021 instruction
is extracted from memory from the 0x00197 address (addra)
and sent to the Instruction Fetch/Instruction Decode pipeline
register via Instruction[31:0] signals. Thus, the instruction is

stored in the ID_Instruction_reg[i][31:0] register, where i is
the sCPUi selected by the nHSE. We can observe how the
ID_Instruction[31:0] signals transmit data from the
ID_Instruction_reg[2][31:0] register, the ID_Instruction[31:0]
pipeline output being wire type, not reg. This output is
modified at the rising edge of the clock signal in connection to
the nHSE_Task_Select[3:0] signals, the following instruction
being retrieved at T3, T4 and T5 moments from the
ID_Instruction_reg[2][31:0] register. The content of the
ID_Instruction_reg[0][31:0] and ID_Instruction_reg[3][31:0]
registers remains unchanged during simulation, because
sCPU0 and sCPU3 are not selected for execution by the Task
Splitting preemptive scheduling. Under these circumstances,
the predictability of the CPU results from the outstanding
performances obtained from context switching, handling
external interrupts and from the simplicity of the architecture.
The goal of this implementation is not to describe a complete
solution of the data path, but to validate the practical
implementation of the nMPRA architecture and of the nHSE
scheduler, using a flexible and competitive FPGA
development platform.

V. RELATED WORK

This chapter presents a brief description of a predictable
processor architecture and a dynamic scheduling algorithm,
which can be compared with the results presented in this paper
using the nMPRA processor and the nHSE scheduler.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

538

Kotecha et al. propose an innovative scheduling algorithm
designed for RTOS, called Adaptive Scheduling Algorithm
[17]. The proposed solution represents a scheduling algorithm
based on a combination of EDF and Ant Colony Optimization
(ACO). The authors present this dynamic algorithm as a real
solution that could be used successfully in embedded systems,
even in real-time applications. The solution is ideal in terms of
Success Ratio and Effective CPU Utilization, obtaining good
results in both underloaded and overloaded conditions.
Presenting the measured execution time taken by each
scheduling algorithms, the authors claim to get better
performance criteria than for existing traditional algorithms.
The aim of this project is to ensure the scheduling
performance of periodic tasks in the preemptive mode in a
single processor environment. The performed analysis and
experiments reveal that the proposed algorithm is both fast and
very efficient, because it can switch automatically between the
EDF algorithm and the ACO based scheduling algorithm.

The MSparc architecture presented in [18] is a
multithreaded processor based on block multithreading,
designed to support architectural requirements for real-time
systems. The proposed multithreaded processor is based on the
SPARC standard, adapted to meet the system requirements. In
order to provide the real time response, guaranteed by a
minimal jitter, the authors choose to move the Round Robin
scheduling algorithm from software to hardware. The main
reason for implementing the MSparc project is to improve the
reaction time for events with hard real-time constraints,
preserving the predictable behavior.

VI. CONCLUSION AND FUTURE WORK

The high performances obtained by the Task Scheduling
algorithm implemented in hardware and the use of a particular
processor architecture named nMPRA are the elements of
originality and innovation that the present paper brings to the
current state of research.

The Preemption Thresholds scheduling model can reduce
the number of context switching, although the preemption cost
represents a disadvantage; this cost is not easily estimated,
because the number of context switching for every task cannot
be accurately calculated. The Task Splitting cooperative
scheduling model is the most predictable mechanism for
estimating the preemption costs, because it can accurately
estimate both the number of as well as the points (defined by
the new nHSE registers grPrPointTS[0:3][31:0]), where
context switching occurs.

By implementing the Task Splitting scheduling method in
the hardware and with the support of the static nHSE
scheduler, this project demonstrates the importance of
dividing the execution of an instruction in stages and shows
how CPU clock cycles can be saved using various scheduling
models. Moreover, the time needed for context switching can
be reduced by implementing a scheduler in hardware and by
multiplying resources from the nMPRA architecture.

Due to the large dimensions of the project and the many
connection wires and various interconnected modules, pipeline
processors are difficult to design. To comply with time

limitations, it was necessary for the data to be read and
modified at the same period clock. Furthermore, it was very
important to decide which of the registers are registered types
and which components are clocked.

The performances and stability of the nMPRA architecture
can be improved by designing a cache memory for optional
data and by implementing a memory protection unit (MPU)
for the hard real-time tasks, focusing on reducing the
operating system overhead.

ACKNOWLEDGMENT

This work was partially supported from the project
“Integrated Center for research, development and innovation
in Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectoral Operational Program for Increase of
the Economic Competitiveness co-funded from the European
Regional Development Fund.

REFERENCES
[1] G. C. Buttazzo, “Hard Real-Time Computing Systems - Predictable

Scheduling Algorithms and Applications,” Third edition, Springer, 2011.
[2] W. Stallings, “Computer Organization and Architecture,” 10th Edition,

2015.
[3] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based

on a hardware scheduler and independent pipeline registers – concept
and theory of operation,” in IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, IN, USA, pp. 1-5, May
2012.

[4] V. G. Gaitan, N. C. Gaitan, and I. Ungurean, “CPU Architecture Based
on a Hardware Scheduler and Independent Pipeline Registers,” in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 9, pp. 1661-1674, Sept. 2015.

[5] I. Zagan, “Improving the performance of CPU architectures by reducing
the Operating System overhead,” in The 3rd IEEE Workshop on
Advances in Information, Electronic and Electrical Engineering
AIEEE’2015, pp. 1-6, 13-14 Nov. 2015, Riga, Latvia.

[6] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption,” in Real-Time System, pp. 63–119, 2009.

[7] G. Yao, G. C. Buttazzo, and M. Bertogna, “Feasibility Analysis under
Fixed Priority Scheduling with Fixed Preemption Points,” in IEEE 16th
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pp. 71-80, Aug. 2010.

[8] D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design, Revised Fourth Edition: The Hardware-Software Interface,”
Fourth Edition, 2011.

[9] M. Hwang, D. Choi, and P. Kim, “Least Slack Time Rate First: an
Efficient Scheduling Algorithm for Pervasive Computing Environment,”
in Journal of Universal Computer Science, vol. 17, no. 6, pp. 912-925,
2011.

[10] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with
preemption threshold,” in Sixth International Conference on Real-Time
Computing Systems and Applications (RTCSA '99), pp. 328-335, 1999.

[11] A. Burns, “Preemptive priority-based scheduling: an appropriate
engineering approach,” in Advances in real-time systems, pp. 225-248,
1995.

[12] I. Zagan, “Real-time evaluation of nMPRA CPU Architecture based on
Multithreaded Execution,”in 8th International Conference on Computer
Science and Information Technology (ICCSIT 2015), 10 - 11 Dec. 2015,
Amsterdam, Netherlands.

[13] “MIPS® Architecture for Programmers Volume I-A: Introduction to the
MIPS32® Architecture,” Revision 3.02, Mar. 2011, Available:
https://courses.engr.illinois.edu/cs426/Resources/MIPS32INT-AFP-
03.02.pdf. (Accessed: 10-05-2016).

[14] www.xilinx.com/support/documentation/boards_and.../ug885_VC707_E
val_Bd.pdf, (Accessed: 17-08-2016).

[15] http://opencores.org/project,mips32r1, (Accessed: 12-09-2015).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

539

[16] I. Zagan and V. G. Gaitan, “Schedulability Analysis of nMPRA
Processor based on Multithreaded Execution,” in 13rt International
Conference on Development and Application Systems (DAS), Suceava,
Romania, pp. 130-134, May 19-21, 2016.

[17] K. Kotecha and A. Shah, “Adaptive scheduling algorithm for real-time
operating system,” in IEEE Congress on Evolutionary Computation
(CEC 2008), pp. 2109-2112, Jun. 2008.

[18] A. Metzner and J. Niehaus, “MSparc: Multithreading in Real-Time
Architectures,” in Journal of Universal Computer Science, pp. 1034-
1051, vol. 6, no. 10, 2000.

