
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

106

Abstract—This paper proposes a new technique for improving

the efficiency of software testing, which is based on a conventional
attempt to reduce test cases that have to be tested for any given
software. The approach utilizes the advantage of Regression Testing
where fewer test cases would lessen time consumption of the testing
as a whole. The technique also offers a means to perform test case
generation automatically. Compared to one of the techniques in the
literature where the tester has no option but to perform the test case
generation manually, the proposed technique provides a better
option. As for the test cases reduction, the technique uses simple
algebraic conditions to assign fixed values to variables (Maximum,
minimum and constant variables). By doing this, the variables values
would be limited within a definite range, resulting in fewer numbers
of possible test cases to process. The technique can also be used in
program loops and arrays.

Keywords—Software Testing, Test Case Generation, Test Case
Reduction

I. INTRODUCTION
strategy for software testing integrates software test case
design methods into a well-planned series of steps that

result in the successful construction of software .The strategy
provides a road map that describes the step to be conducted as
part of testing, when these steps are planned then undertaken,
and how much effort, time, and resource will be required.
Therefore, any testing strategy must incorporate test planning,
test case design, test case execution and resultant data
collection and evaluation [1].

Software testing is a process of inspecting the performance
of software. The objective of software testing is to detect
faults in the program and therefore, provide more assurance
for customers on the quality of the software. As a part of any
software development process, software testing represents an
opportunity to deliver quality software and to substantially
reduce development cost as much as 50% [1]. Many testers
believe that software testing involves only detection of
defective code. However, the testing itself extends beyond
identification of the defects, and actually covers reporting and
offering recommendations for appropriate actions.

Manuscript received December 2007.
R. P. Mahapatra is with SRM-IMT, Modinagar Campus of SRM University

Chennai as an Assistant professor and HOD (CSE & IT) (e-mail:
mahapatra.rp@gmail.com).

Jitendra Singh is as with SRM-IMT, Modinagar Campus of SRM
University Chennai as Sr. Lecturer (CS Dept) (e-mail:
Jitendra.jit@gmail.com).

The lack of understanding in this principle usually leads to
incomplete testing work [5]. Software testing can severely
suffer from planning that is not based on or does not
adequately reflect actual environments where the software is
operated. This problem usually occurs when testers are
without any backup plan and or awareness of the
environments themselves. Contrary to the common nature of
programming, software testing places more emphasis on the
design than the code. Therefore, testers who employ
methodologies to detect defective code are often failing to
find the real problems, which are usually embedded in the
design of software. Another important aspect of software
testing is that the number of the test cases that have a direct
effect on the cost of testing, particularly that of Regression
testing [1]. When tests must be run repeatedly for every
change in the program, it is advantageous to have as small a
set of test cases as possible.

II. PROBLEM DESCRIPTION

A. Issues of Interest
With a tremendous number of possible test cases available,

testers have no means to generate appropriate test cases. The
ideal test cases should enhance possibility of exposing
undetected errors. Despite the importance of techniques in
identifying these test cases, developing the techniques remains
one the most difficult aspects of software testing. It is
generally accepted that the availability of more effective Tests
would significantly reduce the cost associated with software
development [3].

B. Interested Problems
This paper tries to improve test performance as follows:

 • Reducing the number of test cases – The reduction
technique reduces the cost of executing and validating tests.
Therefore it is of great practical advantage to reduce the
number of test cases.

• Automatic test case generation – One of the most
important components in a testing environment is an
automatic test data generator.

• Minimum number of test runs – Use less time is spent on
test runs.

Improving the Effectiveness of Software Testing
through Test Case Reduction

R. P. Mahapatra, and Jitendra Singh

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

107

III. LITERATURE REVIEWS

A. Software-Testing Techniques
With finding errors as the primary objective of software

testing, higher probability of detecting defects has become the
defining quality of an effective test. Computer-based systems,
which are known to offer testers with diversity of testing
methods and, hence, enhance probability of detection, are
therefore recommended as the most efficient tools currently
available[4], [6].

1) Path testing: aims to inspect the validity of selected
paths without the need for testing every possible path (as
required in Structural testing). The test is preferable when the
number of all available paths is so great that testing all of
them become impractical [1].

2) Independent program paths: an independent program
path is any path through the program that introduces at least
one new set of processing statements or a new condition.
When stated in terms of a flow graph, an independent path
must move along at least one edge that has not been traversed
before the path is defined.

For example:

CYCLOMATIC COMPLEXITY:
The cyclomatic complexity gives a quantitative measure of

the logical complexity. This value gives the number of
independent paths in the basis set and an upper bound for the
number of tests to ensure that each statement is executed at
least once. An independent path is any path through program
that introduces at least one new set of processing statements or
a new condition (i.e. new edge) [1].

Example
 1. Number of regions of flow graph
 2. Edges-nodes+2
 3. Predicate node+1.

Deriving test cases:
1. Using the design or code, draw the corresponding flow

graph
2. Determine the cyclomatic complexity of the flow graph
3. Determine a basis set if independent paths.
4. Prepare test cases that will force execution of each path in

the basis test.

Independent paths:
Path 1: 1-11
Path 2: 1-2-3-4-5-10-1-11
Path 3: 1-2-3-6-8-9-10-1-11
Path 4: 1-2-3-6-7-9-10-1-11
Note that each new path introduces a new edge. The path 1-

2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an
independent path because it is simply a combination of
already specified paths and does not traverse any new edges.
Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in
Figure 2.1. That is, if tests can be designed to force execution
of these paths (2, 4, 6, 7), every statement in the program is
guaranteed to be executed at least one time, and every
condition will have been executed on its true and false sides. It
should be noted that the basis set is not unique. In fact, a
number of different basis sets can be derived for a given
procedural design.

B. Dynamic Domain Reduction (DDR)
DDR is the technique that creates a set of values that

executes a specific path. It transforms source code to a
Control Flow Graph (CFG). A CFG is a directed graph that
represents the control structure of the program. Each node in
the graph is a basic block, a junction, or a decision node [8].

C. Test Case Generation Technique
DDR uses the GetSplit algorithm to find a split point to

divide the domain. The GetSplit algorithm is as follows:

Algorithm

Getsplit (LeftDom, RightDom, SrchIndx)
Precondition
LeftDom and RightDom are initialized appropriately And
SrchIndx is one more than the last time Getsplit was called
with these domains for this expression.
Postcondition
Split value = (LeftDom.Bot AND RightDom.Bot) and
Split value =(LeftDom.Top AND RightDom.Top)
Input
LeftDom: Left expr’s domain with Bot and Top values
RightDom: right expr’s domain with Bot and Top values
Output
Split–a value the divides a domain of values into two sub
domains.
BEGIN
-- Compute the current search point
-- srchPt = (1/2, 1/4, 3/4, 1/8, 3/8 …)
-- Try to equally split the left and right expression's
domains.

1

2

6

7 8

9

4

1

1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

108

IF (LeftDom.Bot= RightDom.Bot AND LeftDom.Top =
RightDom.Top)

Split=(LeftDom.Top -LeftDom.Bot)*srchPt + LeftDom.Bot
ELSE IF (LeftDom.Bot= RightDom.Bot AND LeftDom.Top
= RightDom.Top)

Split=(RightDom.Top -RightDom.Bot)*srchPt +
RightDom.Bot

ELSE IF (LeftDom.Bot= RightDom.Bot AND LeftDom.Top
= RightDom.Top)

Split=(RightDom.Top - LeftDom.Bot)*srchPt +
LeftDom.Bot

ELSE -- LeftDom.Bot= RightDom.Bot AND LeftDom.Top =
RightDom.Top

Split=(LeftDom.Top - RightDom.Bot)*srchPt +
RightDom.Bot
END IF
RETURN split
END GetSplit

In the dynamic domain reduction procedure, loops are

handled dynamically instead of finding all possible paths. The
procedure exits the loop and continues traversing the path on
the node after the loop. This eliminates the need for loop
unrolling, which allows more realistic programs to be handled.
[2][7]

IV. PROPOSED TECHNIQUE
A. Objectives
1) To reduce number of all test cases. Generally, the larger

the input domain, the more exhaustive the testing would be.
To avoid this problem, a minimum set of test cases needs to be
created using an algorithm to select a subset that represents
the entire input domain. In addition, when test cases are
larger, the testing itself would take longer to run, particularly
for regression testing where every change in the program
demands repeat testing. Therefore, reducing number of the test
cases does have advantage in efficiency.

2) To find the technique for automatic generation of test
cases. To reduce the high cost of manual software testing
while increasing reliability of the testing

Processes, IT researchers and technicians have found
methods to automate the reduction process. With the
automatic process, the cost of software development could be
significantly reduced.

3) To keep a minimum number of test runs. The best
technique must be able to generate test cases from only one
example test run.

In this paper, a new algorithm is used to meet the above-
mentioned objectives, using the following steps.

A. Test Cases Generation Technique
There are four steps to generate test cases:

1) Finding all possible constraints from start to finish nodes. A
constraint is a pair of algebraic expressions which dictate
conditions of variables between start and finish nodes (>, >=,
<, <=, ==, !=)

2) Identifying the variables with maximum and minimum
values in the path, if any. Using conditions dictated by the
constraints, two variables, one with maximum value and the
other with minimum value, can be identified. To reduce the
test cases, the maximum variable would be set at the highest
value within its range, while assigning the minimum variable
at the lowest possible value of its range.
3) Finding constant values in the path, if any. When constant
values can be found for any variable in the path, the values
would then be assigned to the given variables at each node.
4) Using all of the above-mentioned values to create a table to
present all possible test cases.

B. Expected Results
Using the methodology, the new algorithm would have the

following characteristics:
1) Number of test cases. The number of test cases is smaller
since each variable has a fixed value, either as maximum,
minimum or constant values.
2) Automatic test cases generation. The test cases can be
automatically generated with the reduction process.
3) Less time to test run. A single generation of test cases
reduces the time of test run and compilation.

V. EVALUATION
A comparative evaluation has been made between the

proposed techniques, the existing technique (Get Split
algorithm technique). The following areas are used to compare
with existing techniques:

1) Number of test cases
2) Reduction percentage of test cases
3) Compilation time

The evaluation is described using two examples

A. Example
The function value takes three marks as input such as

mark1, Mark2, mark3 and returns some total mark for student
depending upon the performance.

1. Source code

 int value(mark1,mark2,mark3)
{
int total;
Total=0;
If(mark1<mark2)
{
Mark3=mark3+5;
If (mark1<mark3)
Total=mark1+10;
Else
Total=mark1+5;
Else
{
mark3=mark3+10;
total=mark1+mark2+mark3;
}
return (total);
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

109

2. Control flow graph

 tot=0

 ma1<ma2 ma1>=ma2

ma3=ma3+5 m a3=ma3+10

 tot=ma1+ma2+m3

ma1>=ma3 ma1<ma3

 tot=ma1+10

tot=ma1+10

 return (v)
ma1=mark1, ma2=mark2, ma3=mark3
tot=total.

3. No of independent path:

 Path1: 1, 2,4,6,8
 Path2: 1, 2,4,7,8
 Path3: 1,3,5,8
4. Evaluation result for proposed method:

Assume that the path 1-2-4- 6-8 is elected and the initial
domains of the input variables are
<0 to 30>, <10 to 50>, <0 to 40>
A step follows:
1) Finding all possible constraints from start to finish nodes.

 Ma1 < ma2, ma1> = ma3
2) Find minimum values in the path, if any.
From the above conditions, it is possible to identify ma3 as the
variable with the minimum value and ma2 as the variable with
maximum value. In accordance to the finding, a value of zero,
the lowest value within the range of variable ma3, can then be
assigned to ma3 while the value of ma2 can be set at 50, the
highest value of the variable.
3) Finding constant values in the path, if any. Ma1 constant
value for variable ma3found on node 2 of the path has been
used to replace the fix value of ma3 (10) at the node.
4) Using all of the above-mentioned values to create a table to
present all possible test cases.ma1 value is 10..30, ma2 as the
variable with maximum value = 50, ma3 as the variable with
the minimum value = 10.
Reduced test cases:

Variables All test cases

ma1 ma2 ma3

10 50 10

11 50 10

12 50 10

13 50 10

14 50 10

15 50 10

16 50 10

17 50 10

18 50 10

19 50 10

20 50 10

21 50 10

22 50 10

23 50 10

24 50 10

25 50 10

26 50 10

27 50 10

28 50 10

29 50 10

30 50 10

Total 21

5. Evaluation result for existing method:

Assume that the path 1-2-4- 6-8 is elected and the initial
domains of the input variables are
<0 to 30>, <10 to 50>, <0 to 40>

A step follows:

1. Finding all possible constraints from start to finish nodes.
ma1<ma2, ma1>=ma3, ma3=10

2. Calculate split value and splitting

Intervals for all constraints.

(i) For constraints ma1<ma2
Splitting values are 8, 10, 11, 13, 15. We choose the split
value=15from above mentioned values. Then divided the
input domain into two intervals

1

2 3

4 5

6 7

8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

110

TABLE I
No Ma1 Ma2

 1 0 to 15 10 to 30

 2 16 to 30 31 to 50

From the constraints ma1 is lesser than ma2. Then choose
the interval from constraints checking. The selected interval is

TABLE II

No Ma1 Ma2

 1 0 to 15 -

 2 16 to 30 31 to 50

(ii) For the second constraint ma1>=ma3.the split values

are 7, 10, 11, 15, 17.We choose the split value=10 from above
mentioned values. Then divided the input domain into two
intervals

TABLE III
No Ma1 Ma3

 1 0 to 10 0 to 10

 2 11 to 30 11 to 40

From the constraints ma1 is Greater than equal to ma3.
Then choose the interval from constraints checking. The
selected interval is

TABLE IV
 No Ma1 Ma3

 1 0 to 10 0 to 10

 2 11 to 30 -

(iii) Third constraint is ma3=16.

TABLE V

No Ma3

 1 16

From Table II, Table IV, Table V, finally calculate all
selected intervals

TABLE VI

No Ma1 Ma2 Ma3

 1 0 to 10 - 16

 2 11 to 30 31 to 50 -

 From the Table VI, total test cases are 651.

VI. EVALUATION RESULTS

TABLE VII
 Method
Area

Proposed
Algorithm

Existing
algorithm

All possible test
Cases

52111 52111

Reduced test cases 21 651

Saving (%) 99.95 98.75

Time of compilation 5.25 162.75

Total possible test case came from number values on each
variable 31*41*41.

Saving (%) = 100-((100*Reduced Test Case)/All Possible
Test Case).

VII. ANALYSIS GRAPH

0
100
200
300
400
500
600
700

1 2

Fig. 1 X-axis for algorithm, Y-axis for reduced test cases, 1- for
proposed solution, 2- for existing solution

VIII. CONCLUSION
The new proposed technique has achieved greater reduction

percentage of the test cases while keeping test cases
generation to a single run. Furthermore, for compilation, it has
been found that the new technique is the least time-consuming
among the one existing technique. Based on the analysis done,
the proposed method can be considered a superior technique
from all others available in current literatures. Limitation of
the proposed technique lies in its requirement for
identification of fix values for all variables, either as
maximum, minimum or constant values. The technique is not
applicable where there are more than two variables in the
program code. The future work on the technique would,
therefore, address these problems and find practical measures
to overcome them.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

111

ACKNOWLEDGMENT
There are far too many people to try to thank them all;

many people have contributed to the development of this
paper. We owe our deep regards and honour to express our
gratitude to Dr. S. P. Sabbarwal, Director, SRM-Institute of
Management & Technology, Modinagar and all the faculty
members for providing me invaluable support, guidance, help
and inspiration all through this paper.

REFERENCES
[1] B. Beizer. “Software Testing Techniques.” Van Nostrand Reinhold, 2nd

edition, 1990.
[2] B. Korel, “Automated Software Test Data Generation,” Conference on

Software Engineering, Vol 10, No. 8, pages 870-879, August 1990.
[3] L. A. Clarke, “A System to Generate Test Data and Symbolically

Execute Programs,” IEEE Transactions on Software Engineering, Vol.
SE-2, No. 3, pages 215-222, September 1976.

[4] L. J. Morell. “A Theory of Error-Based Testing,” PhD thesis, University
of Maryland, College Park MD, 1984, Technical Report TR-1395

[5] M. J. Gallagher and V. L. Narsimhan, “ADTEST: A Test Data
Generation Suite for Ada Software Systems,” IEEE Transactions on
Software Engineering, Vol. 23, No. 8, pages 473-484, August 1997.

[6] Neelam Gupta, A. P. Mathur and M. L. Soffa, “Automated Test Data
Generation using An Iterative Relaxation Method,” ACM SIGSOFT
Sixth International Symposium on Foundations of Software Engineering
(FSE-6), pages 231-244, Orlando, Florida, November 1998.

[7] Offutt A. Jefferson, J. Pan and J. M. Voas. “Procedures for Reducing the
Size of Coverage-based Test.

R. P. Mahapatra post graduated M.E (CSE) from
University of Madras and pursuing PhD from
Berhampur University Orissa. His employment
experience includes the Anna University, Madras
University, Mekelle University, Ethiopia and
presently working as an Assistant professor and HOD
(CSE & IT) SRM-IMT, Modinagar Campus of SRM
University Chennai. His special fields of interest
included Software Engineering, Network Security

and Artificial Intelligence.

Jitendra Singh post graduated M.Tech. (CSE)
from IETE, New Delhi and M.C.A from IGNOU
University & MSc (Maths) from CCS University
Meerut. His employment experience includes the
U.P. Technical University Lucknow, CCS
University Meerut, Dr. B. R. Ambedkar University
Agra and presently working as a Senior Lecturer in
SRM-IMT, Modinagar Campus of SRM
University Chennai. His special fields of interest

included Software Engineering, Network Security and User Authentication
Mechanism

