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Abstract—Since the presentation of the backpropagation
algorithm, a vast variety of improvements of the technique for
training a feed forward neural networks have been proposed. This
article focuses on two classes of acceleration techniques, one is
known as Local Adaptive Techniques that are based on weight-
specific only, such as the temporal behavior of the partial derivative
of the current weight. The other, known as Dynamic Adaptation
Methods, which dynamically adapts the momentum factors, 0., and
learning rate, m, with respect to the iteration number or gradient.
Some of most popular learning algorithms are described. These
techniques have been implemented and tested on several problems
and measured in terms of gradient and error function evaluation, and
percentage of success. Numerical evidence shows that these
techniques improve the convergence of the Backpropagation
algorithm.
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1. INTRODUCTION

HE most popular Artificial Neural Networks (ANN)

architectures is called multilayer perceptrons (MLP)
because of its similarity to perceptron networks with more
than one layer. The MLP refer to the network consisting of a
set of sensory units (source nodes) that constitute the input
layer, one or more hidden layers of computation nodes, and an
output layer of computation nodes. Nodes or neurons in any
layer of the network, is connected to all the neurons in the
previous layer. The input signal propagates through the
network in a forward direction, from left to right and on a
layer-by-layer basis. The Back-Propagation is the best known
and widely used learning algorithm in training multilayer
perceptrons.
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II. BACKPROPAGATION ALGORITHM
The error signal, e;(n)at the output of neuron j at
iteration # is defined by
ej(”):dj(”)_yj'(”) 1
where d ;(n) refers to the desired response for neuron j and is
used to compute e (n) and
Y ;(n) refers to the function signal appearing at the output of

neuron j at iteration ».
The objective of back-propagation algorithm is to minimize
e;(n) so that the desired response will be close to the actual

response.
We define the instantaneous value of the error energy for

1 . .
neuron j as Eez j(n). Correspondingly, the instantaneous

value &(n) of the total error energy is obtained by summing

1 .
Eez j(n) over all neurons in the output layer. We may thus

write

En)=5 3 ) @
2 jeC
where the set C includes all the neurons in the output layer of
the network. Let N denote the total number of patterns
(examples) contained in the training set. The average squared
error energy is obtained by summing &(n) over all » and then
normalizing with respect to the set size N, as shown by

N
) ©)
N n=1

The objective of the learning process is to adjust the free
parameters (i.e. synaptic weights and bias levels) of the
network to minimize &,,. To do this minimization, the weights
are updated on a pattern-by pattern basis until one epoch, that
is, one complete presentation of the entire training set. The
arithmetic average of these individual weight changes over the
training set is therefore an estimate of the true change as
would result from modifying the weights based on minimizing
the cost function &, over the entire training set. In its most

basic form, it is a simple gradient optimization procedure:
wji(n+1):wji(n)—776§/6wﬁ 4)
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In the batch mode variant the descent is based on the gradient
A¢ for the total training set :
o¢
Awﬁ(n):_n*a—+a*iji(n—l) )
Wi
where & is the cost function being minimized, w; is a generic

weight in the network, a is a momentum factor and n is the
learning rate or step size parameter.

III. LoCAL ADAPTIVE TECHNIQUES

Many techniques have been proposed to date to deal with
problems of gradient descent. These techniques can be
roughly divided into two categories, Global and Local
adaptive techniques. Global techniques are algorithms that use
global knowledge of the state of the entire network, such as
the direction of the overall weight-update vector. For example,
a class of global algorithms, are Steepest Descent and
Conjugate Gradient (CG) methods. The CG methods include
Fletcher Reeves, Powell Beale and Polak Ribiere method.

Local adaptation strategies are based on weight specific
information only, which means that they use an independent
learning rate for every adjustable parameter (every
connection) [1]. Therefore they are able to find an optimal
learning rate for every weight. Some of the local adaptive
techniques will discussed below.

A. Sign Changes

Learning rate adaptation by sign changes will adapt the step
size using a separate learning rate, 77, for each connection

[2]. The adaptation is done by observing the signs of the last
two gradients. As long as no change in sign is detected, the
corresponding learning rate is increased. If the sign changes,
the learning rate is decreased.

If, in two successive iterations, the updates of x (or
equivalently, the gradient values) have opposite signs, that
means that we have “jumped over a minimum” and that the
step size is too large. On the other hand, if two successive
signs are equal, it appears that we could have moved
somewhat faster, while still not passing beyond the minimum.
The basic heuristic for adaptation is then simply to decrease
the step size of two successive updates that have opposite
signs, and to increase it if they have the same sign. It was
proposed to use a linear step size increase, and an exponential
step size decrease. The step size update is according to the
following:

it 92 (%25 (n=1)20

owji -~ Owj; (6)

i (n)= ;i (n—1)%d, else.

Then, update the weight according to equation (5).
The choice of proper parameters # and d is easy as long as
u=1/d holds. From the simulation that have been tested, the
recommended values are 1.1-1.3 for » or 0.7-0.9 for d. They
also use a backtracking strategy which restarts an update step

if the total error increases. For this restart all learning rates are
halved.

Uji(n):ﬂji(n_l)*“a

B. Delta Bar Delta Rule

Delta-Bar-Delta algorithm controls the learning rates by
observing the sign changes of an exponential averaged
gradient [3]. Increase the learning rates by adding a constant
value instead of multiplying it. Hence,
1. Choose some small initial value for every 7 (0) .

2. Adapt the learning rates:

nji(n):n/’i(n_l)+“7 if ﬁ(n)* % (n—l)ZO
‘ awji i
.. 0 0
7,i(n)=1;(n=1)xd, 1faw—i(n)*8w—i(n—1)so )

;i (”’): ;i (n—l), else.
In particular it is difficult to find a proper . Small values may
result in slow adaptations while big ones endanger the

learning process. Very different values are recommended for u
(5.0,0.095,0.085,0.035) and d (0.9,0.85,0.666).

C. SuperSAB

Super SAB is also based on the idea of sign independent
learning rate adaptation [4]. The basic change is to increase
the learning rate exponentially instead of linearly as with
Delta-Bar-Delta method. This is done to take the wide range
of temporarily suitable learning rates into account. By using a
proper upper limit 1y, the algorithm behaves perfectly all
over the training period.

Recommended values for # is 1.05 and 4 is 0.5 and
recommended values for 1.« is between 0 and 1. Hence,

n(n) ==, if ﬁ(")*ﬁ(n—l)20/\77,-,-(n—1)£77max
6Wji ji
.. O 0
miln)=nn=1)xd, i ﬁi(n)*ﬁi(n—l)éo ®)
’Z/f(”):U/i(nfl), else.

D. Quickprop

This is an optimization of back-propagation based on
Newton’s method [5]. It is applicable when, between two
steps, the gradient has decreased in magnitude and has
changed sign. Then a parabolic estimate of the MSE is used to
determine the weights for the next step. Quickprop computes
the derivatives in the direction of each weight [6]. After
computing the first gradient with regular back-propagation, a
direct step of the error minimum is attempted by

) .
- e MY ©

Ax(t)

E. Rprop

Rprop uses an adaptive version of the “Manhatan-Learning”
rule and is a local adaptive learning scheme [7]. The basic
principle of Rprop is to eliminate the harmful influence of the
size of the partial derivative on the weight step not influenced
by the magnitude of the gradient. Only the sign of the
derivative is used to find the proper update direction.
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Rprop uses independent update step size A ; for every

connection. Furthermore, these step sizes are adapted with
respect to the sign of the actual and the last derivative. The
step sizes are bounded by upper and lower limits in order to
avoid oscillation and arithmetic underflow of floating point
values. Finally, local backtracking is applied to those
connections where sign changes of the derivative are detected.
Hence,

1. Choose some small initial value for every update step
size A ;;(0).
2. Adapt the step sizes:

8 4(n) =2y n=1)sa, if%(n)*afvi(n_l)zo

Ji Ji

Jt

A=A, if 25 () a‘ff (n-1)<0

Aji (n) = AmaX’ A;i (n) 2 Amax (1 0)
Aj,- (I’Z) = Amina Aji (n) < Amm
3. Update the connection:
awy(n)=-a,(n)  if 25 (n)>0
: : ow;
.. 0&
iji(n):+Aji(n) if Wﬁ(n)<0 (11)
Awj; (n)=0, else

Recommended values for the parameters are:
Apax = 50.0, 4,,;, = 0.000001 andu = 1.2.

IV. DYNAMIC ADAPTATION METHODS

These techniques can be classified into the local adaptive
techniques category since an optimal learning rate or
momentum factor is assigned to each individual weight at
different iterations. = These techniques have been
mathematically derived and proven to be effective and
superior in terms of convergence when tested and compared
with the batch Backpropagation [8],[9],[10].

A. Dynamic Momentum Factor(DMF)

DMF is an adjustment applied to the momentum factor at
iteration n. Let A« ;(n,0)denote the positive adjustment

applied at iteration » to the momentum constant at iteration 0,
@ i(0,0). We define Aa j;(n,0)as

Aa;(n,0) =7 +a;(0,0) (12)
for all n €[a, b] where 0< ;/(f <l-a;(0,0) and }/f > }/Cd
for a>c and b>d.

B. Dynamic Learning Rate 1(DLR 1)

DLR method 1 is an adjustment applied at iteration » to the
learning rate parameter, based on the gradient of each weight.
Subsequently, it varies with every iteration.

Let A7 (n) denote the adjustment applied at iteration » to

the learning rate parameter at iteration 0, 7 ;(0). We define

An j;(n) as

A (n) = 25 +1,(0) (13)
for all &= é’i}(a:l) € (da,ob) and /1‘; </1§(°7, for da>éc
and 6b>&d. ’

C. Dynamic Learning Rate 2 (DLR 2)

DLR method 2 is a positive adjustment applied at iteration »
to the learning rate parameter. Let A7 (n,0) denote the

positive adjustment applied at iteration » to the learning rate
parameter at iteration 0, 77; (0, 0). We define An;;(n, 0) as

A (1,0) = 24 +71,:(0,0) (14)
for all nela,b] where ;(é’ >0 and ;(j > ;(Ld for a>c and

b>d.
The initial value of 7, 77,;(0,0) can be any small value in the

interval [0, 1].

V. SIMULATION PROBLEM

A. Human Face Recognition Problem

Computer simulations for the local adaptive techniques,
global adaptive techniques and dynamic adaptation methods
are presented. The performance of all the techniques was
compared with the Backpropagation (BP). The methods
include: (1) Backpropagation (BP) (2) Sign Changes (SC) (3)
Delta-Bar-Delta Rule (DB) (4) SuperSAB (SAB) (5)
Quickprop (QP) (6) Rprop (RP) (7) Dynamic Momentum
Factor (DMF) (8) Dynamic Learning Rate 1 (DLR1) (9)
Dynamic Learning Rate 2 (DLR2) (10) Powell-Beale (CGB)
(11) Fletcher-Reeves (CGF), and (12) Polak-Ribiere (CGP) .
Here, the performance of these techniques were compare on
the human face recognition problem.

Table 1 shows the percentage of improvement of the
algorithms compared to the BP algorithm in terms of gradient
evaluation and error function evaluation. Each gradient
evaluation and error function evaluation consists of y, SD and
Min/Max which respectively denote the mean number of
gradient or error function evaluation, standard deviation and
minimum/maximum number of gradient or error function
evaluation.

A detailed description of the data sets and architecture of the
network can be referred to Zainuddin and Ahmad Fadzil [11].
The data set for training and testing consists of 45 different
face images each. A 460-12-5 network was used where there
were 460 input nodes, 12 hidden nodes and output nodes
corresponding to the 5 classification classes. The training
process was terminated when the MSE reached 1*¥107 in
30,000 epochs.
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TABLEI
SIMULATION RESULTS FOR THE HUMAN FACE RECOGNITION PROBLEM
Algorithm Gradient Evaluation Error Function Evaluation Improvement
) SD Min/Max u SD Min/Max %

BP 18523 680.6 17001/20045 18523 680.6 17001/20045 -

SC 617.5 206.4 156/1079 617.5 206.4 156/1079 96.67
DB 387 163.5 154/620 387 163.5 154/620 97.91
SuperSAB 571 186.5 160/994 577 186.5 160/994 96.88
Quickprop 385.5 101.7 158/613 3855 101.7 158/613 97.92
Rprop 148 16.1 112/184 148 16.1 112/184 99.20
DMF 250 71.6 90/410 250 71.6 90/410 98.65
DLR 1 2275 66.0 80/375 227.5 66.0 80/375 98.77
DLR 2 326 353 247/405 326 353 247/405 98.24
CGB 128.5 1.6 125/132 170.5 1.6 167/174 99.19
CGF 557.5 190.3 132/983 566 179.3 165/967 96.97
CGP 140.5 2.0 136/145 173.5 2.9 167/180 99.15
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