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   Abstract—A New features are extracted and compared to 

improve the prediction of protein-protein interactions. The basic idea 
is to select and use the best set of features from the Tensor matrices 
that are produced by the frequency vectors of the protein sequences. 
Three set of features are compared, the first set is based on the 
indices that are the most common in the interacting proteins, the 
second set is based on the indices that tend to be common in the 
interacting and non-interacting proteins, and the third set is 
constructed by using random indices. Moreover, three encoding 
strategies are compared; that are based on the amino asides polarity, 
structure, and chemical properties.  The experimental results indicate 
that the highest accuracy can be obtained by using random indices 
with chemical properties encoding strategy and support vector 
machine. 
 

Keywords—protein-protein interactions, random indices, 
encoding strategies,  support vector machine. 

I. INTRODUCTION  
LMOST every cellular process relies on interacting of 
two or more proteins in order to accomplish a specific 

task, therefore; predicting protein–protein interactions (PPI) 
represents a crucial step toward deciphering the biological 
processes, such as protein synthesis, signaling pathways, DNA 
replication, cell adhesion and regulation of metabolic. Drug 
discovery and understanding the functional roles of un-
annotated protein are another area where protein–protein 
interaction prediction plays an important role. Moreover; 
Protein–protein interactions is only the way which allows to 
the cells to communicate with the internal and the external 
parts. High throughput experimental methods including two-
hybrid screens, affinity purification, mass spectrometry, 
protein chip and hybrid approaches have been used in an 
attempt to discover protein-protein interactions pairs. 
However, experimental methods are time-consuming, 
expensive and exhibit high false positive and false negative 
rates. Therefore the current experimental methods are 
covering only a fraction of the complete protein-protein 
interaction networks [1, 2].   

Protein-protein interaction database are generated by the 
experimental methods, and then collected together in 
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specialized biological databases that allow the interactions to 
be searched, compared and studied further. The first of these 
databases was Database of Interacting Proteins (DIP) at 
UCLA. DIP contains 23146 proteins, 274 organisms and 
71205 interactions. For instance, the number of the 
Saccharomyces cerevisiae (baker's yeast) interactions that are 
stored in DIP is 23855, the number of the Drosophila 
melanogaster (fruit fly) interactions pairs is 22975 and the 
number of the Homo sapiens (Human) interactions pairs is 
3350 [3]. A large number of further database collections have 
been created such as BIND, MIPS, GRID, HIV Interaction 
DB and STRING [4] . Fig. 1 shows interactions that are 
generated by STRING database [5].  

 
Fig. 1 PPI that are generated by STRING database 

 
Unfortunately, PPI databases are contradictory and 

incomplete, the main reason is that the interacting proteins 
pairs (positive sets) are much less than the proteins pairs that 
do not interact (negative set). For example the estimated 
number of the Yeast positive set is roughly 80,000 pairs, while 
the number of the unrepeated pairs that are produced by 6000 
proteins in the Yeast is about 18 million, which means that the 
estimated number of the Yeast negative set is about 17 million 
pairs [6]. 

The computational techniques are the alternative methods to 
predict protein-protein interactions. Several computational 
approaches have been applied to predict protein-protein 
interaction such as: homology modeling, interolog mapping, 
statistical potentials, threading of structural complexes, 
correlated mutations, and docking methods. In this paper a 
novel features are generated and compared to enhance the 
prediction accuracy.  
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II. RELATED WORK 
Several computational techniques have been developed. An 

important category is based on integration the PPI data source. 
Lan et al. [6] integrated direct and indirect genomic and 
proteomic data to construct a decision tree, and then the 
decision tree is used to predict protein pairs. Jansen et al. [7] 
used naïve Bayes and a fully-connected Bayesian network to 
combine direct and indirect data sources. QI et al. [8] 
constructed a random forest (several decision trees) from a 
training set by using direct and indirect information about 
protein-protein interactions. The resulting forest and the 
classification algorithms are used to classify the protein pairs. 
Yanjun et al. [9] collected 163 features from 17 different data 
source; the suggested sources can be divided into four types: 
Direct experimental, indirect data, based on the proteins 
sequences and functional properties of proteins. Li et al. [10] 
showed that conditional random fields outperformed the 
conventional classification methods, where 1276 non-
redundant hetero complex chains are used as training and 
testing set. Jansen et al. [6] developed an approach based on 
Bayesian networks, their method naturally weights and 
combines the genomic features, and it can integrate often 
noisy experimental interaction data sets. The main 
disadvantage of this category is the difficulties of collecting 
the full protein-protein interaction data from all the sources, 
and the pre-knowledge about the proteins is not always 
available. Another important category have been used to solve 
prediction of PPI is based on protein sequences or DNA 
sequences. Espadaler et al. [11] predicted the protein 
interaction by using the similarities of the structures and the 
conservation history of interacting proteins pairs. Wang et al. 
[12] used spatial sequence profile, sequence information 
entropy and evolution rate, they suggested two stages models: 
support vector machine and Bayesian discrimination by 
considering the predicted labels of spatial neighbor residues. 
Wang et al. [13] suggested a new method based only on DNA 
sequences, they selected a suitable negative set to deal with 
the imbalance problem, the suggested method applied on 
Plasmodium falciparum and Escherichiacoli. Bakar et al. [14] 
predicted protein-protein interactions by using multiple 
independent fuzzy systems and the similarity of protein 
secondary structures. Their method consists of two main steps: 
similarity score computation, and similarity classification. The 
first step consists of three tasks: multiple-sequence alignment, 
secondary structure prediction and similarity measurement.  In 
the classification stage; 1029 proteins of Saccharomyces 
cerevisie (baker’s yeast) are used to  train and test the 
generated first order Sugeno fuzzy system. Yaveroglu [15]  
predicted protein-protein interaction by using phylogenetic 
profiles, two proteins are combined by checking existence of 
homologs in different species and fitting the combined profile 
into a statistical model. 

III. CONSTRUCTION OF THE FREQUENCY ARRAY  
In this section a new general algorithms are suggested to 

extend the frequency vector that is introduced by [16]. 
Algorithm 1 can be used with any length of the amino acids 
subsequences.  

 
Algorithm 1: Frequency Array construction 
    Repeat  
    i =  i+1 

    j = km
m

k
ki sAA −

=
+ ∗∑

0

+1 

    freqVec j= freqVec j+1; 
    if  i+m+1= length(AA) then  stop 
 
where freqVec  is the frequency vector of an amino acid, m 

is the length of the amino acid subsequence, s depends on the 
representation system and AA is an amino acid  sequence that 
is represented  by one of the following three encoding 
strategies: 
1-Based on the Amino acid polarity: the amino acid is 
identified as polar or non-polar. A further sub-classification of 
acidic-polar when the side chain contains a carboxylic acid, 
and basic-polar when the side chain contains an amino group 
[17]:  

                    
        Non polar {'G', 'A', 'V', 'I', 'L','Y', 'M', 'P', 'F' }   0 
        Polar{'S', 'T', 'N', 'Q','C', 'W'}   1 
        Acidic (Polar){'K', 'H', 'R'}   2 
        Basic (Polar){'D', 'E'}   3 
  

2- Based on structure of the side chain: the nature of the 
amino acid side chains has significant influence on the 
topography of the protein. The complex protein structures are 
generated by the bonds between amino acid side chains. 
Koolman suggested the following seven categories based on 
the amino acid structures [18]: 

 
Alphatic {'G', 'A', 'V', 'I', 'L'}   0 
Sulfur-containing {'C', 'M'}   1 
Aromatic {'F', 'Y', 'W'}   2    
Neutral {'S', 'T', 'N', 'Q'}   3 
Acidic {'D', 'E'}   4 
Basic {'K', 'R', 'H'}   5 
Special case {' P'}   6 
 

3- Based on the Amino acids chemical properties. The amino 
acids can be categorized by using dipole scale and volume 
scale, where dipole scale can be divided into five levels and 
volume scale can be divided into two levels [16]:    

    
Level one and one {'A','G','V'}   0 
Level one and two {'I','L','F','P'}   1 
Level two and two{'Y','N','Q','W'}   2    
Level three and two {'H','M','T','S'}   3 
Level four and two {'R','K'}   4 
Level five and two {'D','E'}   5 
Special case {'C'}   6 
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IV. FEATURE EXTRACTION 
Feature extraction will be adopted in this paper due two 

reasons: Firstly to analysis a large number of variables, a huge 
amount of memory and computation power are required. For 
example if the size of the vector freqVec is 343 then the size 
of the variables which are produced by Tensor product is 
117659, which is considered very huge to be processed. 
Secondly a large number of variables is suspected to be 
notoriously redundant (much data, but not much information) 
which overfits the training sample and generalizes poorly to 
new samples. In this paper, three Feature sets are suggested 
and tested: 

 
Indices =FindLargest(DiffMatrix, v) // To find the indices 

of the largest v values, which are more common in the 
interacting proteins 

Indices =FindSmallest(Abs(DiffMatrix), v) // To find the 
indices of the common v values   

Indices =Random // To generate  v random indices 
 
Thus the set of positive and negative patterns can be 

generated by using the following algorithm: 
 
Foreach index i and j in the indices array 
      Foreach  interacting pairs a and b 
                Pk = b

j
a
i freqVecfreqVec ×   

                Tk =1 
Foreach index i and j in the indices array 
      Foreach  non-interacting pairs c and d 
                Pk+t = d

j
c
i freqVecfreqVec ×   

                Tk+t =0 
 
DiffMatrix is the different between the sum of the 

normalized matrices of the all Tensor product of the 
interacting pairs and the sum normalized matrices of the all 
Tensor product of the non interacting pairs 

 
foreach  interacting pairs a and b 
          Ak= freqVec a  ⊗    freqVec b 

               Bk=Ak/Ak  (normalizing using element by element 
division) 

         PositiveSum=∑
=

n

k
kB

1
 

foreach  non-interacting pairs c and d 
          Ck= freqVec c  ⊗    freqVec d 

               Dk=Ck/Ck  (normalizing using element by element 
division) 

          NegativeSum=∑
=

n

k
kD

1
 

DiffMatrix= PositiveSum- NegativeSum 

V. FEATURE SELECTION AND SUPPORT VECTOR MACHINES 
The previous set of features can be finalized by using one 

of the feature selections techniques. Signal-to-Noise (S2N) is 
a fast and reliable feature selection technique. It ranks the 
features with the ratio of the "signal" (the difference between 
the mean values of the two classes), and the "noise" (the 
within class standard deviation). This criterion is similar to the 
Pearson correlation coefficient, the Ttest criterion and the 
Fisher criterion. The S2N top ranking features can be selected 
by using the following formula [19].  

 

−+

−+
+
−

=
σσ
μμ ||

2NS                             (1)                   

 
The last step can be used to predict the PPIs is applying one 

of the machine learning methods on the finalized set of 
features. Support Vector Machines (SVM) has been 
successfully applied to a wide range of pattern recognition and 
classification problems.   SVM can be used to find a 
hyperplane which divides the data into two classes: the first 
class is denoted by  +1's and the second class is denoted by     
1's. The hyperplane is the set of points X satisfying:  

 
WT. X - b = 0                              (2)                   

 
Where W is the weights and X is a vector. The optimal 

hyperplanes can be chosen by using soft margin method 
which splits the classes with maximum margin and minimum 
error. The following constraint must be added to prevent the 
points falling into the margin: 

 
WTxi + b  ≥  1      for all xi of  the first class. 
WTxi + b  ≤ - 1    for all  xi of  the second class. 
 
 For non-linear cases, the data must be mapped into a richer 

feature space. SVMs use an implicit mapping Φ  of the input 
data into a high-dimensional feature space defined by a kernel 
function. A general kernel equation is:  

 
)||||(

2121

2
21).(),( xxhd exxtxxk −−+=              (3)                   

 
There are many possible kernel functions such as: 
RBF Kernel: h=c, t=0, d=0. 
Linear Kernel: h=0, t=0 and d=1. 
Polynomial (homogeneous): h=0, t= βand d=m. 
Polynomial (inhomogeneous): h=0, t= 1 and d=m. 

    In this paper a polynomial radius base function (PRBF) is 
implemented where d=3, t=1 and h=0.07. Thus the Non-
linear form is: 

∑
=

+
l
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i

T
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Subject to            
yi (WT Φ (xi ) + b)  ≥  1- iξ   

iξ ≥ 0                                         (4)                   
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TABLE I 
COMPARISON BETWEEN FOUR SETS OF FEATURES, THREE ENCODING STRATEGIES USING SVM.

Encoding 
strategies Features Training Validation Testing 

BER AUC BER AUC BER AUC 

Polarity 

Largest 0.32 98.90 7.12 94.76 34.41 73.10 
Smallest 0.60 100.00 6.51 94.12 31.20 76.12 
Random 0.12 100.00 2.00 96.86 29.18 78.71 
Concatenation 0.31 100.00 1.14 97.33 30.82 77.55 

Structure 

Largest 0.20 99.31 4.31 93.23 29.30 79.40 
Smallest 0.09 100.00 4.23 94.01 29.35 80.91 
Random 0.03 100.00 1.12 99.27 28.81 83.74 
Concatenation 0.15 100.00 1.14 98.43 27.10 81.16 

Chemical 
properties 

Largest 0.22 99.80 1.10 98.12 25.30 86.13 
Smallest 0.17 100.00 0.83 99.11 21.75 88.18 
Random 0.00 100.00 0.22 100.00 13.31 91.42 
Concatenation 0.12 100.00 0.62 99.40 23.50 88.58 

 
TABLE II 

COMPARISON BETWEEN  FOUR SIZES OF THE AMINO ACIDS SUBSEQUENCES. 
Subsequence 

Size (m) 
Vector 

size 
Indices 

(v) 
Training Testing Time(s) BER AUC BER AUC 

Two 49 2401 0.37 99.21 24.31 78.01 1283 
Three 343 6000 0.00 100.00 13.31 91.42 2675 
Four 2401 7000 0.30 100.00 24.11 87.72 2820 
Five 16807 8000 0.11 99.75 22.10 87.93 3098 

 

VI. EXPERIMENTAL RESULTS 
To compare the prediction accuracy of the suggested 

techniques, Drosophila melanogaster (fruit fly) protein-
protein interaction dataset is collected from 
http://bioinformatics.org.au (under Tools and Data/Databases 
and Datasets) [20]. The dataset contains 30878 pairs, the pairs 
were matched by using various methods such as: affinity-
chromatography, two hybrid pooling approach and immuno-
precipitation. Another 30000 random protein pairs are 
generated to be considered as non interacting proteins.  40000 
pairs are used to create the indices and 20000 pairs are used 
for training, validation and testing. Matlab 8.0a and CLOP 
package are used to implement and to compare the state-of-art 
prediction methods (CLOP Package 
http://clopinet.com/CLOP/). Two measurements are used: 
Balance Error Rate (BER) and Area Under Carve (AUC).       
A k-folding scheme with k=10 is applied to all data. Table 1 
compares four sets of features, three of them are introduced in 
the previous section and the fourth is a simple concatenation 
between two frequency vectors. On the other hand, three 
encoding strategies are compared, which are based on 
polarity, structure and chemical properties. Subsequence with 
size m=3, v=6000 (the number of the generated indices) and 
S2N=4000 (the number of the selected features) are used in all 
experiments in Table 1. It can be observed that the best result 
can be obtained by using random indices with chemical 
properties encoding strategy, where BER =13.31 and AUC = 
91.41.  

Table 2 compares four sizes of the amino acids 
subsequences, the chemical properties encoding strategy, 
random indices and S2N=4000 are applied to all experiments. 
It can be notice that in the case m=2, the maximum length of 
the frequency vector is 49 and the Tensor product of two 
vectors is 49*49=2401, thus the number of the generated 
indices can not exceed 2401. The number of the other indices 
is selected to be 6000, 7000 and 8000. However it is clear that 
the best prediction rate is by using m=3.  

Table 3 compares between the state of the art of the 
prediction methods, the chemical properties encoding strategy, 
random indices and S2N=4000 are applied to all experiments. 
Six methods are tested by using AUC and BER, the methods 
are: Random Forest, NeuralNet, LinearSVM, Kridge, 
NaiveBayes and NonLinearSVM. The best result can be 
obtain by using NonLinearSVM, therefore, we can conclude 
that, NonLinearSVM outperforms the state-of-art prediction 
methods. 

 
TABLE III 

COMPARISON  BETWEEN THE STATE OF THE ART OF THE PREDICTION METHODS 
Method Testing 

BER AUC 
Random Forest 33.56 69.30 
NeuralNet 30.32 73.17 
LinearSVM 37.92 63.12 
Kridge 34.93 69.50 
NaiveBayes 36.81 64.04 
NonLinearSVM 13.31 91.42 

 



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:5, No:3, 2011

138

VII. CONCLUSION 
Protein-protein interaction is important for tasks ranging 

from metabolic analysis to drug discovery. With the huge 
volume of the protein sequences that are stored in the 
databanks, it is highly demanded to develop a fast and 
accurate method based on protein sequences to predict 
protein-protein interaction. In this paper three encoding 
strategies, four different sets of features and six machine 
learning methods are implemented and compared.  Dataset of  
60,000 fruit fly PPIs and non-PPIs are used, the results 
indicate that using random indices with chemical properties 
and SVM is superior to the other methods.  The next step will 
be to generate more sets of features, use new encoding 
strategies, and apply it to other organisms such as human PPIs 
task where the relatively small number of positive set is a 
major obstacle.  
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