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Improvement of the Shortest Path Problem with
Geodesic-Like Method

Wen-Haw Chen

Abstract—This paper proposes a method to improve the shortest
path problem on a NURBS (Non-uniform rational basis spline) sur-
faces. It comes from an application of the theory in classic differential
geometry on surfaces and can improve the distance problem not only
on surfaces but in the Euclidean 3-space R

3 .
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I. INTRODUCTION

A fundamental problem in many fields such as CAD,
CAGD, robotics and computer graphics etc. is to ask how
to compute effectively the distance between two objects on a
surface. This problem can be present as simple as to find the
minimum distance between two geometric objects R3, but it
is hard to improve in general and in practice.

The simplest case about this problem is to compute the
distance between two points and it can be estimated exactly by
the Pythagorean theorem. The orthogonal projection problem
considers the case that only one object is a point and has many
applications[20], [19]. There are many results in the investi-
gations of the orthogonal projection problem. Especially, in
order to improve the distance problem between a point and a
NURBS curve, Chen[3], [4], MaYL [16] and Selimovic[26]
presented some effective methods. Hu[10] developed a good
method to improve the orthogonal projection onto curves and
surfaces. In the case that none of these objects is a single point,
Kim[13] presented a method to estimate the distance between
a canal surface and a simple surface in 2003, while Chen[5]
improved this problem on two implicit algebraic surfaces in
2006. Therefore, one can find many methods to investigate the
shortest path problem in R

3.
However, there are only few methods to study this problem

on a curved surface. Maekawa [17] shows a very good method
for solving the shortest path and the orthogonal projection
problems on free-form parametric surfaces. Generally, the
distance problem on a regular surface is more complicated
than that in R

3, even though the distance is just between two
points on the surface. It is equivalent to find the length of the
shortest path between them. We can find more information in
reference [18]. This classical problem has many applications,
such as in object segmentation, multi-scale image analysis
and CAD etc.[2], [14], [25]. There are also many methods
to estimate the shortest path on triangular mesh [15], [27],
polyhedral[11], [22] and regular surface[12], [24] etc. These
methods can be extend to improve the distance between one
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point and one curve or between two curves on surface but they
are not effective methods.

In this paper, the distance problem on NURBS surfaces
and parametric surfaces will be improved by the geodesic-like
method with B-spline basis shown in [6] and [7]. In fact, the
geodesic-like method can also improve the distance problem
in R

3 but its efficiency is less than other algorithms that we
known. In section 2, we will review the related geodesic theory
in the classic differential geometry. The notion of geodesic-
like method will be introduced in section 3. In section 4 we
shall present how to use the geodesic-like algorithm to estimate
the distance between two objects on a NURBS surface. The
discussion of the shortest path problem and some simulations
will be presented in the last of this paper.

II. GEODESICS IN CLASSIC DIFFERENTIAL GEOMETRY

A geodesic on a regular surface S is a smooth curve α(s) :
[a, b] → S satisfying that the covariant derivative of α vanishes
at each point. That is, γ satisfies the differential equation

D

ds
γ′ = 0, (1)

where D
ds is the covariant derivative and γ′ is the derivative of

γ with respect to the parameter s. Precisely, Suppose that S
is a regular surface and (U,x) is a system of coordinates on
S. A curve γ(t) = (x1(t), x2(t)) is a geodesic curve in (U,x)
on S if it satisfies the system of geodesic equations (see [1])

d2xk

dt2
+
∑
i,j

Γk
ij

dxi

dt

dxj

dt
= 0, k = 1, 2. (2)

Again, we consider a regular surface S with a parametriza-
tion x : U ⊂ R

2 → S. Here it is known that x is a
diffeomorphism from U onto a subset x(U) of S. Then the
energy function on a smooth curve γ on the surface S with a
parameter γ(s) : [a, b] → U is defined by

E(γ) =
1

2

∫ b

a

‖ d

ds
x(γ(s))‖2ds. (3)

A proper variation of the curve γ is a differentiable map h :
[a, b]× [−ε, ε] → U such that⎧⎨

⎩
h(s, 0) = γ(s), s ∈ [a, b]
h(a, t) = γ(a), t ∈ [−ε, ε]
h(b, t) = γ(b), t ∈ [−ε, ε]

(4)

Intuitively, ht(·) = h(·, t) is a differentiable curve with the
same endpoints for each t ∈ (−ε, ε). Thus the energy function
on ht can be represented as

E(t) =
1

2

∫ b

a

∥∥∥∥∂(x ◦ h)
∂s

(s, t)

∥∥∥∥
2

ds, t ∈ (−ε, ε). (5)
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From the theory of differential geometry, it is well-known that
the critical points of the function E(t) is the geodesics on
surfaces i.e. if E′(0) = 0 then γ is a geodesic on S.

Here is a basic relationship between the length and energy
functions.

Theorem 1: Let S be a regular surface and p, q ∈ S be two
distinct points. If γ is a shortest path between p and q on S,
then γ is a geodesic on S which pass through p and q. That
is, the geodesic γ(t) is a critical point of the length function

L(s) =

∫ b

a

‖∂f
∂t

(s, t)‖dt. (6)

The distance between two points on a surface S is defined
by the length of minimum path on S from p to q. Then

d(p, q) = min
γ∈Γ

L(γ). (7)

where Γ is the set of all paths on S from p to q and L(γ) is
the length of the curve γ on S. From theorem 1, the set Γ can
be only considered the set of all geodesic on S from p to q.
See [1] for details.

III. GEODESICS-LIKE METHOD

Consider the parametric surface S with a parametrization
x : U → R

3 and two curves c1, c2 on S. For simplicity, we still
denote c1, c2 : [a, b] → U such that x(c1([a, b]), x(c2[a, b]) are
the curves c1 and c2, respectively. Thus the distance between
c1 and c2 on S can be computed by

d(c1, c2) = min
s,t∈[a,b]

d(x(c1(s)),x(c2(t))). (8)

That is, d(c1, c2) is the length of minimum geodesic from
c1 to c2. Equation (8) introduces a simple algorithm to
improve this distance problem but it is too expansive. Let us
describe it roughly.

Algorithm 1: First, we digitize the curves c1 and c2 to two
sequences of points, {pi}mi=0 and {qj}nj=0, respectively. For
each i, j, estimating the minimum geodesic γij between pi
and qj . Then the shortest path in {γij}(m,n)

(i,j)=(0,0) approaches
the minimum geodesic between c1 and c2 on surface S when
m,n are large enough. Of course its length approaches the
minimum distance between c1 and c2 on S.

Solve the geodesic between two fixed points is crucial to
solve Algorithm 1. One can find many effective methods in
the references [9], [12], [15], [22], [24], [27]. However, if the
numbers of {pi} and {qj} are large, this algorithm becomes
very slow. In fact, algorithm 1 is the simplest and the slowest
method to improve this problem.

Definition 2: Let x(u, v) be a parametrization of a reg-
ular surface S, x : U ⊂ R

2 → S. A curve c̃(s) on
U is called a geodesic-like curve of order n + 1 on S if
c̃(s) =

∑n
i=0 N

n
i (s)(ũi, ṽi) is a B-spline curve and satisfies

the system of geodesic equations

(∇E)(ũi, ṽj) = 0, (9)

where

E(ui, vj) =
1

2

∫ b

a

‖x(c(t))‖2dt

is the energy function of curve

c(t) =

n∑
i=0

Nn
i (t)(ui, vi)

and (∇E)(ui, vj) is the gradient of E(ui, vj).
Equation (9) is called the system of standard geodesic-like

equations. Although the system of geodesic-like equations are
integral equations, they can be improved by the Newton’s
method, the iterator method or other numerical methods[8],
[12], [21], [23], [28] effectively.

Since any piecewise differential curve can be approximated
by the B-spline curves, a geodesic-like curve approaches a
geodesic on S when the order of geodesic-like curve is large
enough. In the other words, we can estimate the distance
between two points on S via the minimum geodesic-like
curves. We summarize this property as follows.

Theorem 3: Let S be a parametric surface and let γ :
[0, 1] → S be a geodesic. Assume that the curve cn =∑n

i=0 N
n
i (t)(ui, vi) is the geodesic-like curve between γ(0)

and γ(1) for each positive integer n ≥ 2. Then

lim
n→∞ cn = γ. (10)

The system of geodesic-like equations provides a elegant
method to improve the distance problem between two objects
on surfaces. We are now in a position to introduce this method
in this section. The parametrization x on S is defined on U =
[a, b]× [c, d]. That is

x : [a, b]× [c, d] → S ⊂ R
3.

Let c1 and c2 be two differentiable parameterized curves on
S and

c1(s) : [0, 1] → [a, b]× [c, d]
c2(t) : [0, 1] → [a, b]× [c, d].

Thus c1 = x(c1([0, 1])) and c2 = x(c2([0, 1])) are
two curves on S. To exclude the zero distance case from
our consideration, we can assume that the two curves
have no intersection. Denote c1(s) = (u0(s), v0(s)) and
c2(t) = (un(t), vn(t)) where u0, un : [0, 1] → [a, b] and v0,
vn : [0, 1] → [c, d] are all differentiable functions. Note that
a B-spline curve from [0, 1] into [a, b]× [c, d] with c(0) ∈ c1
and c(1) ∈ c2 always has the form as

c(x) =
∑n−1

i=1 Nn
i (x)(ui, vi) +Nn

0 (x)c1(s) +Nn
n (x)c2(t)

=
∑n−1

i=1 Nn
i (x)(ui, vi) +Nn

0 (x)(u0(s), v0(s))
+Nn

n (x)(un(t), vn(t))
(11)

where x ∈ [0, 1].
Hence, we can rewrite the system of geodesic-like

equations to the following three different forms. These
formulas improve the distance between two curves on S, the
orthogonal projection problem on S and the shortest path
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between two points on S, respectively.

The system of geodesic-like equations between two curves:
From the equation (11), the parameters of the energy func-
tion E are s, t, u1, · · · , un−1, v1, · · · , vn−1. The system of
geodesic-like equations between two curves can be rewritten
as

(∇E)
= (Es, Et, Eu1 , Eu2 , · · · , Eun−1, Ev1 , Ev2 , · · · , Evn−1)
= 0

(12)
The system of geodesic-like equations between one point

and one curve:
If c1 is a constat curve on S, then the derivative of E about t
is vanish. Thus we obtain the geodesic-like equation between
one point and one curve.

(∇E)
= (Et, Eu1 , Eu2 , · · · , Eun−1, Ev1 , Ev2 , · · · , Evn−1)
= 0

(13)

Of course, The orthogonal projection problem on surface cab
be improve by equation (13).

The system of geodesic-like equations between two points:
Moreover, if c1 and c2 are both constant curves on S, then the
geodesic-like equations between points is

(∇E)
= (Eu1 , Eu2 , · · · , Eun−1, Ev1 , Ev2 , · · · , Evn−1)
= 0

(14)

A curve satisfies one of equations (12) - (14) is called a
geodesic-like curve between c1 and c2. Let us describe how
to find the local minimum geodesic-like curve between two
curves c1 and c2 on the surface S. In this algorithm, we solve
the system of geodesic-like curve equations by the Newton’s
method and the iterator method.

Algorithm 2: (Geodesic-like algorithm)
Step 1: Given two closed curves c1 and c2 on the surface.
Input an initial curve c such that the endpoints of c are on the
c1 and c2.
Step 2: Solving the geodesic-like equations (equation (12) or
(14)) by the initial curve c and obtain a geodesic-like curve,
which we still denote it by c, between c1 and c2.
Step 3: If the set (c∩ c1)∪ (c∩ c2) consists of the endpoints
of c, then c is the local minimum geodesic-like curve between
c1 and c2. Otherwise, trimming away some parts of the curve
c such that the intersections of this trimmed curve, which we
still denote it by c, and c1 ∪ c2 are only the endpoints of this
trimmed curve. Then repeat step 2.

By Theorem (3), one will proceed by the geodesic-like
algorithm to obtain the shortest path between c1 and c2 when
n is large enough. We summarize it as follows.

Theorem 4: Let S be a parametric surface and c1, c2 be
two closed curves on S. For each n ≥ 2, c̃n is the local

minimum geodesic-like curve that obtained by the geodesic-
like algorithm (algorithm 2). If the set {c̃n} is a convergent
sequence, then there exists a local minimum geodesic γ
between c1 and c2 such that

lim
n→∞ c̃n = γ. (15)

Moreover, c̃n is orthogonal to c1 and c2 when n is large
enough.

IV. EXAMPLES AND DISCUSSION

The following two examples show the applications of the
geodesic-like method in practice. In our simulations, the
geodesic-like curves are all uniform quadratic B-spline curves
in R

2.
First we consider an open surface S and two closed curves

c1 and c2 on S as in Figure 1. The surface S is a cubic B-spline
surface with (8,4) control points. The red curve in figure 4 is
the local minimum geodesic-like curve of order 11 between
c0 and c1 and its error is less than 10−6.

Secondly, we construct a face model as in Figure 2 by
NURBS surface and find the minimum geodesic-like curves
between two holds in the model. The red curve in figure 2
is the local minimum geodesic-like curve of order 30 and
the green curve is the exact minimum geodesic between two
holes. In Figure 3, we propose that the geodesic-like algorithm
has increased actually this simulation efficiency. The order in
Figure 3 means the number of control points. Then the lengths
of geodesic-like curves constructed by our method approaches
the minimum distance between the two holes. Especially, the
percentage of error, which

error(%) =
Length − minimum distance

minimum distance
× 100%, (16)

will be less than 10−7 provided the geodesic-like curve is
constructed by 60 control points.

The geodesic-like algorithm provides an effective and re-
liable computation of shortest paths between two curves on
surfaces. For computing the shortest paths between two curves

Fig. 1 Distance between two closed curves on a NURBS surface
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16.5411205

Order 3 4 5 6 7 8

Length 17.5720035 17.4468728 17.0309897 16.9571156 16.8484675 16.7715762

Time 0.1009 0.14 0.266 0.422 0.484 0.672

error(%) 6.23224406 5.47576145 2.96152368 2.51491488 1.85807848 1.39322907

Order 9 10 11 12 13 14

Length 16.7433831 16.6780621 16.6571845 16.6094243 16.573226 16.5947413

Time 1.2 3.03 3.4 5.2 3.828 4.592

error(%) 1.22278657 0.82788587 0.70166952 0.41293333 0.19409507 0.32416667

Order 15 16 17 20 30 60

Length 16.5487338 16.5543877 16.5495022 16.5439818 16.5413563 16.5411205

Time 7.213 7.192 7.228 9 15 >60

error(%) 0.04602651 0.08020738 0.0506719 0.0172981 0.00142554 <1.0e-7

minimum distance :

different orders

on R
3, our method in comparable with other well-known

methods. Especially, the construction of geodesic-like curves
only bases on the uniform quadratic B-spline curves since it
is enough to us to consider the geodesic-like curves in the
plane. Significatively, our method can be extended to solve the
distance problem between any two objects on surfaces and the
distance problem in higher dimension.
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Fig. 3 The table of the distance between two holds on a face model with

Fig. 2 The distance between two holds on a face model


