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Improved robust stability criteria for discrete-time
neural networks
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Abstract—In this paper, the robust exponential stability problem
of uncertain discrete-time recurrent neural networks with time-
varying delay is investigated. By constructing a new augmented
Lyapunov-Krasovskii function, some new improved stability criteria
are obtained in forms of linear matrix inequality (LMI). Compared
with some recent results in literature, the conservatism of the new
criteria is reduced notably. Two numerical examples are provided to
demonstrate the less conservatism and effectiveness of the proposed
results.
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I. INTRODUCTION

RECENTLY, recurrent neural networks (RNNs) have re-
ceived intensive interest due to their successful appli-

cations in various areas including such as pattern recogni-
tion, image processing, fixed-point computation, and so on.
However, because of the finite switching speed of neurons
and amplifiers, time delays, both constant and time-varying,
are often unavoidable in various engineering, neural net-
works, large-scale, biological, and economic systems. Since
the occurrence of time delays may cause poor performance
or instability. Therefore, stability analysis of neural networks
has received much attention. Up to now, various stability
conditions have been obtained, and many excellent papers
and monographs have been available (see [1]-[7]). On the
other hand, when designing the neural networks or in the
implementation of neural systems, due to the thermal noise in
the electronic devices, modeling error, the deviation of vital
data, or the random fluctuations and so on, the convergence of
a neural network may often be destroyed. These unavoidable
uncertainty can be classified into two types: that is, stochastic
disturbances and parameters uncertainties. As pointed out
in [8] that, while modeling real nervous systems, both of
the stochastic disturbances and parameters uncertainties are
probably the main resources of the performance degradations
of the implemented neural networks. Therefore, the studies
on robust stability of delayed neural network with parameters
uncertainty have been a hot reach direction. Many sufficient
conditions, either delay-dependent or delay-independent, have
been proposed to guarantee the global robust stability for
different class of delayed neural networks (see [8]-[18]).
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It should be pointed out that most results concerning dy-
namics analysis problems for RNNs with mixed time-delays
have been on continuous-time models, but few in discrete
time. In practice, when implementing and applications of
neural networks, discrete-time neural networks play a more
important role than their continuous-time counter- parts in
today’s digital world, such as numerical computation, com-
puter simulation. And they can ideally keep the dynamic
characteristics, functional similarity, and even the physical or
biological reality of the continuous-time networks under mild
restriction. Thus, the stability analysis problems for discrete-
time neural networks have received more and more interest,
and some stability criteria have been proposed (see [8],[19]-
[29]). In [28], Liu and Wang et al., researched a class of
discrete-time RNNs with time-varying delay, and proposed a
delay-dependent condition guaranteeing the global exponential
stability. This result obtained in [28] has been improved by
Song and Wang in [21]. And the results obtained in [21] are
further improved in [22] by considering some useful terms.
Recently, some new improved criteria are derived in [23], [24],
[29], respectively.

In this paper, some mew improved delay-dependent stabil-
ity criteria are obtained via constructing a new augmented
Lyapunov-Krasovskii function. These new sufficient condi-
tions are less conservative than those obtained in [8], [21]-[24],
[28], [29]. Two numerical examples are provided to illuminate
the improvement of the proposed criteria.

Notation: The notations are used in our paper except where
otherwise specified. ‖ · ‖ denotes a vector or a matrix norm;
R,Rn are real and n-dimension real number sets, respectively;
N

+ is positive integer set. I is identity matrix; ∗ represents
the elements below the main diagonal of a symmetric block
matrix; Real matrix P > 0(< 0) denotes P is a positive
definite (negative definite) matrix; N[a, b] = {a, a+1, · · · , b};
λmin(λmax) denotes the minimum (maximum) eigenvalue of
a real matrix.

II. PRELIMINARIES

Consider a discrete-time recurrent neural network: Σ with
time-varying delays described by

y(k+1) = C(k)y(k)+A(k)f(y(k))+B(k)g(y(k−τ(k)))+J, (1)

where y(k) = [y1(k), y2(k), · · · , yn(k)]T ∈ R
n de-

notes the neural state vector; f(y(k)) = [f1(y1(k)), f2

(y2(k)), · · · , fn(yn(k))]T , g(y(k − τ(k))) = [g1(y1(k − τ(k)))
, g2(y2(k−τ(k))), · · · , gn(yn(k−τ(k)))]T are the neuron activation
functions; J = [J1, J2, · · · , Jn]T is the external input vector;
Positive integer τ(k) represents the transmission delay satisfying
0 < τm ≤ τ(k) ≤ τM , where τm, τM are known positive
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integers representing the lower and upper bounds of the delay.
C(k) = C+�C(k), A(k) = A+�A(k), B(k) = B+�B(k); C =
diag(c1, c2, · · · , cn) with |ci| < 1 describes the rate with which the
ith neuron will reset its potential to the resting state in isolation when
disconnected from the networks and external inputs; C, A, B ∈ R

n×n

represent the weighting matrices; ΔC(k), ΔA(k), ΔB(k) denote the
time-varying structured uncertainties which are of the following form:

[ΔC(k), ΔA(k), ΔB(k)] = KF (k)[Ec Ea Eb],

where K, Ec, Ea, Eb are known real constant matrices of appropriate
dimensions; F (k) is unknown time-varying matrix function satisfying
F T (k)F (k) ≤ I, ∀k ∈ N

+.
The nominal Σ0 of Σ can be defined as

Σ0 : y(k +1) = Cy(k)+Af(y(k))+Bg(y(k− τ(k)))+J. (2)

For further discussion, we first introduce the following assumption
and lemmas.

Assumption 1: For any x, y ∈ R, x �= y,

l−i ≤ f i(x) − f i(y)

x − y
≤ l+i , σ−

i ≤ gi(x) − gi(y)

x − y
≤ σ+

i , i ∈ N
+ (3)

where l−i , l+i , σ−
i , σ+

i are known constant scalars.
As pointed out in [22] that, under Assumption 1, system (2) has

equilibrium points. Assume y∗ = [y∗
1 , y∗

2 , · · · , y∗
n]T is an equilibrium

point of (2), and let xi(k) = yi(k) − y∗
i , fi(xi(k)) = f i(xi(k) +

y∗
i )− f i(y

∗
i ), gi(xi(k − τ(k))) = gi(xi(k − τ(k)) + y∗

i )− gi(y
∗
i ).

Then, system (2) can be transformed into the following form:

x(k+1) = Cx(k)+Af(x(k))+Bg(x(k− τ(k))), k ∈ N
+, (4)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T , f(x(k)) =
[f1(x1(k)), f2(x2(k)), · · · , fn(xn(k))]T , g(x(k − τ(k))) =
[g1(x1(k − τ(k))), g2(x2(k − τ(k))), · · · , gn(xn(k − τ(k)))]T .
By Assumption 1, for any x, y ∈ R, x �= y, functions fi(·), gi(·)
satisfy l−i ≤ fi(x)−fi(y)

x−y
≤ l+i , σ−

i ≤ gi(x)−gi(y)
x−y

≤ σ+
i , i ∈ N

+

and fi(0) = 0, gi(0) = 0.
Definition 2.1: The delayed discrete-time recurrent neural net-

work in (4) is said to be globally exponentially stable if there exist
two positive scalars α > 0 and 0 < β < 1 such that

‖x(k)‖ ≤ α · βk sup
s∈N[−τM ,0]

‖x(s)‖, ∀k ≥ 0.

Lemma 2.1: [30] (Tchebychev Inequality) For any given vectors
vi ∈ R

n, i ∈ N
+, the following inequality holds:

[
nX

i=1

vi]
T [

nX
i=1

vi] ≤ n

nX
i=1

vT
i vi.

Lemma 2.2: [31] For given matrices Q = QT , H, E and R =
RT > 0 of appropriate dimensions, then

Q + HFE + ET F T HT < 0,

for all F satisfying F T F ≤ R, if and only if there exists an ε > 0,
such that

Q + ε−1HHT + εET RE < 0.

Lemma 2.3: [32] Given constant symmetric matrices Σ1, Σ2, Σ3

where ΣT
1 = Σ1 and 0 < Σ2 = ΣT

2 , then Σ1 + ΣT
3 Σ−1

2 Σ3 < 0 if
and only if»

Σ1 ΣT
3

Σ3 −Σ2

–
< 0 or

» −Σ2 Σ3

ΣT
3 Σ1

–
< 0.

Lemma 2.4: [8] Let N and E be real constant matrices with
appropriate dimensions, matrix F (k) satisfying F T (k)F (k) ≤ I ,
then, for any ε > 0, EF (k)N+NT F T (k)ET ≤ ε−1EET +εNT N .

III. MAIN RESULTS
Theorem 3.1: For any given positive integers 0 < τm < τM ,

then, under Assumption 1, system (4) is globally exponentially stable
for any time-varying delay τ(k) satisfying τm ≤ τ(k) ≤ τM , if
there exist positive matrices Q, R, H, γ, positive diagonal matrices
Λ1, Λ2, Z1, Z2, arbitrary matrices C1, C2, M11, M31 of appropriate
dimensions, such that the following LMI holds:

Ξ1 =

2
6666666666664

Ξ11 0 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19
∗ Ξ22 0 0 0 0 0 0 Ξ29
∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39
∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3
7777777777775

< 0, (5)

where Q =

2
4 Q11 Q12 Q13

∗ Q22 Q23
∗ ∗ Q33

3
5 > 0, C1 + C2 = C,

Ξ11 = C
T
1 Q11C1 − Q11 − Λ1L1 + M11(C2 − I)

+(C2 − I)
T

M
T
11 + [1 + (τM − τm)

−1
]R,

Ξ13 = C
T
1 (Q11 + Q12 + Q13) − M11 + (C2 − I)

T
M

T
31,

Ξ14 = −C
T
1 Q12, Ξ15 = −C

T
1 Q13, Ξ16 = C

T
1 Q12 − Q12,

Ξ17 = C
T
1 Q13 − Q13, Ξ18 = M11A + Λ1L2, Ξ19 = M11B,

Ξ22 = −(τM − τm)
−1

R − Λ2Π1, Ξ29 = Λ2Π2,

Ξ33 = Q11+Q22+Q33+Q12 + Q13 + Q23 + (Q12 + Q13 + Q23)
T

+H + γ + τmZ2 + τM Z1 − M31 − M
T
31,

Ξ34 = −Q12 − Q22 − Q
T
23, Ξ35 = −Q13 − Q23 − Q33,

Ξ36 = Q12 + Q22 + Q
T
23, Ξ37 = Q13 + Q23 + Q33, Ξ3,8 = M31A,

Ξ3,9 = M31B, Ξ44 = Q22 − H, Ξ45 = Q23, Ξ46 = −Q22,

Ξ47 = −Q23, Ξ55 = Q33 − γ, Ξ56 = −Q
T
23, Ξ57 = −Q33,

Ξ66 = − Z2

τm

, Ξ77 = − Z1

τM

, Ξ88 = −Λ1, Ξ99 = −Λ2,

L1 = diag(l
+
1 l

−
1 , · · · , l

+
n l

−
n ), L2 = diag(

l+1 + l−1
2

, · · · ,
l+n + l−n

2
),

Π1=diag(σ
+
1 σ

−
1 , · · · , σ

+
n σ

−
n ), Π2=diag(

σ+
1 +σ−

1

2
, · · · ,

σ+
n+σ−

n

2
).

Proof. Constructing a new augmented Lyapunov-Krasovskii func-
tion candidate as follows:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k),

where

V1(k) = bXT (k)Q bX(k),

bXT (k) = [xT (k),
Pk−1

i=k−τm
ηT (i),

Pk−1

i=k−τM
ηT (i)], η(k) =

x(k + 1) − C1x(k).

V2(k) =

k−1X
i=k−τm

ηT (i)Hη(i) +

k−1X
i=k−τM

ηT (i)γη(i),

V3(k) =

−1X
j=−τM

k−1X
i=j+k

ηT (i)Z1η(i) +

−1X
j=−τm

k−1X
i=k+j

ηT (i)Z2η(i).

V4(k) =
1

τM − τm

k−1X
i=k−τ(k)

xT (i)Rx(i),
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V5(k) =
1

τM − τm

k−τmX
j=k+1−τM

k−1X
i=j

xT (i)Rx(i).

Set XT (k)= [xT (k), xT (k−τ(k)), ηT (k), ηT (k − τm), ηT (k −
τM ),

Pk−1

i=k−τm
ηT (i),

Pk−1

i=k−τM
ηT (i), fT (x(k)), gT (x(k−τ(k)))].

Define ΔV (k) = V (k + 1) − V (k). Then, along the solution of
system (4) we have

ΔV1(k) = bXT (k + 1)Q bX(k + 1) − bXT (k)Q bX(k)

= XT (k)(eIT
1 QeI1 − eIT

2 QeI2)X(k), (6)

where

eIT
1 =

2
666666666664

CT
1 0 0
0 0 0
I I I
0 −I 0
0 0 −I
0 I 0
0 0 I
0 0 0
0 0 0

3
777777777775

, eIT
2 =

2
66666666664

I 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 I 0
0 0 I
0 0 0
0 0 0

3
77777777775

.

ΔV2(k) = ηT (k)Hη(k) − ηT (k − τm)Hη(k − τm)

+ ηT (k)γη(k) − ηT (k − τM )γη(k − τM ). (7)

From lemma 2.1 we have

ΔV3(k) = τMηT (k)Z1η(k) −
k−1X

i=k−τM

ηT (i)Z1η(i)

+τmηT (k)Z2η(k) −
k−1X

i=k−τm

ηT (i)Z2η(i)

= τMηT (k)Z1η(k) −
k−1X

i=k−τM

(
√

Z1η(i))T
√

Z1η(i)

+τmηT (k)Z2η(k) −
k−1X

i=k−τm

(
√

Z2η(i))T
√

Z2η(i)

≤ τMηT (k)Z1η(k) − (

k−1X
i=k−τM

η(i))T Z1

τM
(

k−1X
i=k−τM

η(i))

+τmηT (k)Z2η(k) − (

k−1X
i=k−τm

η(i))T Z2

τm
(

k−1X
i=k−τm

η(i)). (8)

ΔV4(k) =
1

τM − τm
[xT (k)Rx(k) − xT (k − τ(k))Rx(k − τ(k)))

+

k−τmX
i=k+1−τ(k+1)

xT (i)Rx(i) +

k−1X
i=k+1−τm

xT (i)Rx(i)

−
k−1X

i=k+1−τ(k)

xT (i)Rx(i)]

≤ 1

τM − τm
[xT (k)Rx(k) − xT (k − τ(k))Rx(k − τ(k))]

+
1

τM − τm
[

k−τmX
i=k+1−τM

xT (i)Rx(i)], (9)

ΔV5(k) =
1

τM − τm
[

k+1−τmX
j=k+2−τM

kX
i=j

xT (i)Rx(i)

−
k−τmX

j=k+1−τM

k−1X
i=j

xT (i)Rx(i)]

= xT (k)Rx(k) − 1

τM − τm
[

k−τmX
i=k+1−τM

xT (i)Rx(i)]. (10)

For any matrices M11, M31 of appropriate dimensions, we have

2xT (k)M11[(C2−I)x(k)+Af(x(k))+Bg(x(k−τ(k)))−η(k)] = 0.

(11)

2ηT (k)M31[(C2−I)x(k)+Af(x(k))+Bg(x(k−τ(k)))−η(k)] = 0.

(12)

From Assumption 1, for any positive-definite diagonal matrices
Λ1, Λ2 of appropriate dimensions, we have

2xT (k)Λ1L2f(x(k))−xT (k)Λ1L1x(k)−fT (x(k))Λ1f(x(k)) ≥ 0,

2xT (k − τ(k))Λ2Π2g(x(k − τ(k))) − xT (k − τ(k)) ×
Λ2Π1x(k − τ(k)) − gT (x(k − τ(k)))Λ2g(x(k − τ(k))) ≥ 0, (13)

Combining (6)-(13), we get

ΔV (k) ≤ XT (k)Ξ1X(k), (14)

If the LMI (5) holds, it follows that there exists a sufficient small
positive scalar ε > 0 such that

ΔV (k) ≤ −ε‖x(k)‖2. (15)

On the other hand, it can easily to get that

V (k) ≤ α1‖x(k)‖2 + α2

k−1X
i=k−τM

‖x(i)‖2, (16)

where α1 = λmax(Q)(1 + τm + τM ) + λmax(H) + λmax(γ) +
τMλmax(Z1) + τmλmax(Z2), α2 = (1 + ‖C1‖2)α1 −
‖C1‖2λmax(Q) + (1 + 1

τM−τm
)λmax(R).

For any θ > 1, it follows from (16) that

θj+1V (j + 1) − θjV (j) = θj+1ΔV (j) + θj(θ − 1)V (j)

≤ θj(−εθ‖x(j)‖2 + (θ − 1)α1‖x(j)‖2

+(θ − 1)α2

j−1X
i=j−τM

‖x(j)‖2). (17)

Summing up both sides of (17) from 0 to k − 1 we can obtain

θkV (k) − V (0) ≤ [α1(θ − 1) − εθ]

k−1X
j=0

θj‖x(j)‖2

+α2(θ − 1)

k−1X
j=0

j−1X
i=j−τM

θj‖x(i)‖2

≤ μ1(θ) sup
j∈N[−τM ,0]

‖x(j)‖2 + μ2(θ)

kX
j=0

θk‖x(j)‖2, (18)

where μ1(θ) = α2(θ − 1)τ2
MθτM , μ2(θ) = α2(θ − 1)τMθτM +

α1(θ− 1)− εθ. Since μ2(1) = −εθ < 0, there must exist a positive
θ0 > 1 such that μ2(θ0) < 0. Then we have

V (k) ≤ μ1(θ0)(
1

θ0
)k sup

j∈N[−τM ,0]

‖x(j)‖2 + (
1

θ0
)kV (0), (19)

On the other hand, set � = α1 + τMα2, we can obtain

V (0) ≤ � sup
j∈N[−τM ,0]

‖x(j)‖2 and V (k) ≥ λmin(Q)‖x(k)‖2. (20)

It follows that ‖x(k)‖ ≤ α · βk supj∈N[−τM ,0] ‖x(j)‖, where

β = (θ0)
−1/2, α =

q
μ1(θ0)+�
λmin(Q)

. By Definition 1, system (1) is
globally exponentially stable, which complete the proof.
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Theorem 3.2: For any given positive integers 0 < τm < τM ,
then, under Assumption 1, system (4) is globally exponentially stable
for any time-varying delay τ(k) satisfying τm ≤ τ(k) ≤ τM , if
there exist positive matrices Q, R, H, γ, positive diagonal matrices
Λ1, Λ2, Z1, Z2, arbitrary matrices M11, M31 of appropriate dimen-
sions, such that the following LMI holds:

Ξ2 =

2
6666666666664

Ξ′
11 0 Ξ′

13 Ξ′
14 Ξ′

15 0 0 Ξ18 Ξ19
∗ Ξ22 0 0 0 0 0 0 Ξ29
∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39
∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3
7777777777775

< 0, (21)

where Q =

2
4 Q11 Q12 Q13

∗ Q22 Q23
∗ ∗ Q33

3
5 > 0,

Ξ
′
11 = −Λ1L1 + M11(C − I) + (C − I)

T
M

T
11

+(1 + (τM − τm)
−1

)R,

Ξ
′
13 = Q11 + Q12 + Q13 − M11 + (C − I)

T
M

T
31,

Ξ
′
14 = −Q12, Ξ

′
15 = −Q13,

Proof. Similar to the proofs of Theorem 3.1, set C1 = I , one can
easily obtain this result, which omitted here.

Theorem 3.3: For any given positive integers 0 < τm < τM ,
then, under Assumption 1, system (4) is globally exponentially
stable for any time-varying delay τ(k) satisfying τm ≤ τ(k) ≤
τM , if there exist positive matrices Q, R, H, γ, positive diagonal
matrices Λ1, Λ2, Z1, Z2, symmetric matrix Ψ, arbitrary matrices
M11, M31 P1, P2, G1, G2 of appropriate dimensions, such that the
following LMI holds:

Ξ3 =

»
Ξ2 0
∗ 0

–
10n×10n

+ Ψ10n×10n < 0, (22)

where

Ψ11 = P1+P T
1 + G1 + GT

1 , Ψ12 = P T
2 + GT

2 − G1 − P1,

Ψ13 = P T
1 , Ψ1,10 = P T

2 + GT
2 − G1 − P1,

Ψ22 = −P T
2 + GT

2 − G2 − P2, Ψ23 = −P T
1 ,

Ψ2,10 = −P T
2 − GT

2 − G2 − P2, Ψ3,10 = −P1

Ψ10,10 = −P T
2 − GT

2 − G2 − P2,

and other sub-blocks of Ψ are zero matrices.

Proof. Similar to the proof of Theorem 3.1, set C1 = I . Since
x(k) − Pk−1

i=k−τ(k) η(i) − x(k − τ(k)) = 0, for arbitrary matrices
P1, P2, G1, G2 of appropriate dimensions, we can obtain that

0 = eXT
1

»
0 P1

0 P2

– eX2, 0 = X
T
1

»
0 G1

0 G2

– eX2, (23)

where eXT
1 (k) = [ηT (k)+xT (k),

Pk−1
i=k−τ(k) ηT (i)+xT (k−τ(k))],eXT

2 = [ηT (k)+xT (k), xT (k)−Pk−1
i=k−τ(k) ηT (i)−xT (k−τ(k))],

X
T
1 = [xT (k),

Pk−1
i=k−τ(k) ηT (i) + xT (k − τ(k))]. Combining (6)-

(13) and (23), we get

ΔV (k) ≤ X ′T (k)ΞX ′(k), (24)

where X ′T (k) = [XT (k),
Pk−1

i=k−τ(k) ηT (i)].
If the LMI (22) holds, it follows that there exists a sufficient small

positive scalar ε > 0 such that

ΔV (k) ≤ −ε‖x(k)‖2. (25)

The rest proof is the same as in Theorem 3.1, which omitted here.

Remark 1. In Theorem 3.1, we proposed V1 which takes
xT (k),

Pk−1

i=k−τm
ηT (i),

Pk−1

i=k−τM
ηT (i) as augmented state. The

proposed augmented Lyapunov function V1 does not considered
in the existing works and may reduce the conservatism of the
delay-dependent result. Moreover, the decomposition of matrix
C = C1 + C2 makes the conservatism of the stability criterion
reduced further, since the elements of matrices C1, C2 are not
restricted into (−1, 1) any more.

Remark 2. Zero equations (23) provides a new method to introduce
free-weighting matrix, which do not considered in existing works.
And free-weighting matrices P1, P2, G1, G2 make an important role
in the reducing of conservatism of a criterion (details see example 2).

Remark 3. It is worth pointing out that the criteria obtained in
above Theorems can be easily extended to robust exponential stability
condition. As for the robust stability of system (1), according to
Lemma 2.2, we can obtain the following results.

Corollary 3.1: For any given positive integers 0 < τm < τM ,
then, under Assumption 1, system (1) is globally robustly and
exponentially stable for any time-varying delay τ(k) satisfying
τm ≤ τ(k) ≤ τM , if there exist positive matrices Q, R, H, γ, positive
diagonal matrices Λ1, Λ2, Z1, Z2, arbitrary matrices M11, M31 of
appropriate dimensions, and ε > 0, such that the following LMI
holds:

Ξ4 �

2
4 Ξ1 ξ1 εξT

2

∗ −εI 0
∗ ∗ −εI

3
5 < 0, (26)

where ξT
1 = [KT MT

11, 0, 0, KT MT
31, 0, 0, 0, 0, 0],

ξ2 = [Ec, 0, 0, 0, 0, 0, Ea, Eb, 0].
Proof. Replacing A, B, C2 in inequality (5) with A+KF (t)Ea,

B + KF (t)Eb and C2 + KF (t)Ec, respectively. Inequality (26) for
system (1) is equivalent to Ξ1 + ξ1F (t)ξ2 + ξT

2 F T (t)ξT
1 < 0. From

lemma 2.2, lemma 2.3 and lemma 2.4, we can easily obtain this
result, which complete the proof.

Corollary 3.2: For any given positive integers 0 < τm < τM ,
then, under Assumption 1, system (1) is globally robustly and
exponentially stable for any time-varying delay τ(k) satisfying
τm ≤ τ(k) ≤ τM , if there exist positive matrices Q, R, H, γ, positive
diagonal matrices Λ1, Λ2, Z1, Z2, arbitrary matrices M11, M31 of
appropriate dimensions, and ε > 0, such that the following LMI
holds:

Ξ5 �

2
4 Ξ2 ξ′1 εξ′T2

∗ −εI 0
∗ ∗ −εI

3
5 < 0, (27)

where ξ′T1 = [KT MT
11, 0, 0, KT MT

31, 0, 0, 0, 0, 0],
ξ′2 = [Ec, 0, 0, 0, 0, 0, 0, Ea, Eb].

Corollary 3.3: For any given positive integers 0 < τm <
τM , then, under Assumption 1, system (1) is globally robustly
and exponentially stable for any time-varying delay τ(k) sat-
isfying τm ≤ τ(k) ≤ τM , if there exist positive matrices
Q, R, H, γ, positive diagonal matrices Λ1, Λ2, Z1, Z2, arbitrary ma-
trices M11, M31 P1, P2, G1, G2 with appropriate dimensions, and
ε > 0, such that the following LMI holds:

Ξ6 �

2
4 Ξ3

eξ1 εeξT
2

∗ −εI 0
∗ ∗ −εI

3
5 < 0, (28)

where eξT
1 = [KT MT

11, 0, 0, KT MT
31, 0, 0, 0, 0, 0, 0], eξ2 =

[Ec, 0, 0, 0, 0, 0, 0, Ea, Eb, 0].
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TABLE I
ALLOWABLE UPPER BOUNDS τM FOR GIVEN τm (EXAMPLE 1)

Cases τm = 1 τm = 4 τm = 8 τm = 15 τm = 25

By [8], [28] 3 6 10 17 27
By [21] 12 14 16 21 29
By [22] 12 14 18 25 35
By [29] 14 17 19 26 36
By [23] 14 17 21 28 38
By [24] 20 22 26 33 43

By Theorem 3.1,3.2, 3.3 τM > 0 τM > 0 τM > 0 τM > 0 τM > 0

TABLE II
ALLOWABLE UPPER BOUNDS τM FOR GIVEN τm (EXAMPLE 2)

Cases τm = 2 τm = 4 τm = 6 τm = 8 τm = 10

By [21] failed failed failed failed failed
By [22] failed failed failed failed failed
By [28] failed failed failed failed failed

By Corollary 3.1 failed failed failed failed failed
By Corollary 3.2 failed failed failed failed failed

By [8] 18 20 22 24 26
By [24] 24 26 28 30 34

By Corollary 3.3 τM > 0 τM > 0 τM > 0 τM > 0 τM > 0

IV. NUMERICAL EXAMPLES

In this section, two numerical examples will be presented to
show the improvement and effectiveness of the main results derived
above.

Example 1. For the convenience of comparison, consider a delayed
discrete-time recurrent neural network in (4) with parameters given
by

C =

»
0.8 0
0 0.7

–
, A =

»
0.001 0

0 0.005

–
, B =

» −0.1 0.01
−0.2 −0.1

–
.

The activation functions are assumed to be fi(s) = gi(s) =
0.5 ∗ (|s + 1| − |s − 1|). Obviously, l−1 = σ−

1 = −1, l+2 = σ+
2 = 1.

It can be verified that the LMI (5), (21), (22) are feasible. For
τm = 1, 4, 8, 15, 25, Table 1 gives out the allowable upper bound
τM of the time-varying delay for given τm, respectively, which shows
that, for this example, the delay-dependent exponential stability result
proposed in Theorem 3.1, Theorem 3.2, and Theorem 3.3 are less
conservative than these previous results.

Example 2. For the convenience of comparison, consider a delayed
discrete-time recurrent neural network in (1) with parameters given
by

C =

2
4 0.4 0 0

0 0.5 0
0 0 0.4

3
5 , A =

2
4 0.3 −0.1 0.2

0 −0.3 0.2
−0.1 −0.1 −0.2

3
5 ,

B =

2
4 0.2 0.1 0.1

−0.2 0.3 0.1
0.1 −0.2 0.3

3
5 , K =

2
4 0.1 0 0

0 0.1 0
0 0 0.1

3
5 ,

Ec = Ea = Eb = K, J = [0, 0, 0]T ,

f1(s) = tanh(0.2s), f2(s) = tanh(0.4s), f3(s) = tanh(0.2s),

g1(s) = tanh(0.12s), g2(s) = tanh(0.2s), g3(s) = tanh(0.4s).

It can be verified that L1 = Π1 = 0, L2 = diag(0.1, 0.2, 0.1),
Π2 = diag(0.06, 0.1, 0.2), and the LMI (28) is feasible. For
τm = 2, 4, 6, 8, 10, Table 2 gives out the allowable upper bound τM

of the time-varying delay for given τm, respectively, which implies
that, for this example, the delay-dependent exponential stability result
proposed in Corollary 3.3 in this paper provides less conservatism
than those obtained in [8], [21], [22], [24], [28].

When τm = 2, τM = 100, by the Matlab LMI Toolbox, a feasible
solution to the LMI (28) is obtained as follows:

Q11 =

2
4 142.1658 −17.6253 −1.1583

−17.6253 135.1619 8.5093
−1.1583 8.5093 140.1468

3
5 ,

Q12 =

2
4 −3.6440 0.3497 0.3433

0.1807 −6.0973 −0.8800
0.2302 −0.3793 −4.4553

3
5 ,

Q13 =

2
4 −0.0502 0.0074 0.0019

0.0081 −0.0560 −0.0009
0.0022 −0.0044 −0.0439

3
5 ,

Q22 =

2
4 4.6496 −0.9163 −0.2124

−0.9163 5.0049 0.5412
−0.2124 0.5412 3.8276

3
5 ,

Q23 =

2
4 −0.0139 0.0041 0.0007

0.0027 −0.0118 −0.0029
−0.0002 −0.0004 −0.0111

3
5 ,

Q33 =

2
4 0.0962 −0.0157 −0.0041

−0.0157 0.1030 0.0076
−0.0041 0.0076 0.0863

3
5 ,

R =

2
4 8.6947 −2.4727 −0.5482

−2.4727 10.0667 1.5172
−0.5482 1.5172 7.3986

3
5 ,

H =

2
4 46.5167 −2.5896 −0.8314

−2.5896 62.7329 3.2843
−0.8314 3.2843 50.2522

3
5 ,

γ =

2
4 16.4910 −4.8464 −1.1441

−4.8464 18.7861 3.1320
−1.1441 3.1320 14.2678

3
5 ,

Z1 =

2
4 0.1168 0 0

0 0.1463 0
0 0 0.0961

3
5 ,

Z2 =

2
4 13.7752 0 0

0 15.9935 0
0 0 12.9945

3
5 ,

Λ2 =

2
4 107.3772 0 0

0 123.4630 0
0 0 95.9376

3
5 ,

Λ1 =

2
4 106.8048 0 0

0 86.8649 0
0 0 114.8134

3
5 ,

M11 =

2
4 −52.1439 9.9421 2.6629

−1.0630 −52.4450 −8.7828
0.7615 0.8028 −54.3665

3
5 ,

M31 =

2
4 124.5100 −21.5080 −3.4123

−8.3535 128.0636 12.5404
0.5521 3.3418 119.2432

3
5 ,

P1 =

2
4 6.7570 −1.3781 −0.7266

−0.9612 5.2725 −0.8791
0.3573 1.1824 6.9043

3
5 ,

P2 =

2
4 230.1390 −20.6622 5.1184

−4.8568 199.3365 −27.2650
3.6819 2.2878 −24.6629

3
5 ,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1012

G1 =

2
4 2.7491 1.0033 1.4947

1.7218 6.9440 −2.2799
0.8398 −0.6938 12.1390

3
5 ,

G2 =

2
4 215.2528 −20.1392 4.9019

−3.9677 180.2401 −28.0725
5.7910 3.0529 −53.0478

3
5 ,

ε = 57.6638.

V. CONCLUSIONS

Combined with linear matrix inequality (LMI) technique, a new
augmented Lyapunov-Krasovskii functional is constructed, and some
new improved sufficient conditions ensuring globally exponential
stability or robust exponential stability are obtained. Numerical
examples show that the new results are less conservative than some
recent results obtained in literature cited therein.
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