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Abstract—The use of deep learning for species identification in 

camera trap images has revolutionised our ability to study, conserve 
and monitor species in a highly efficient and unobtrusive manner, 
with state-of-the-art models achieving accuracies surpassing the 
accuracy of manual human classification. The high imbalance of 
camera trap datasets, however, results in poor accuracies for minority 
(rare or endangered) species due to their relative insignificance to the 
overall model accuracy. This paper investigates the use of Focal 
Loss, in comparison to the traditional Cross Entropy Loss function, to 
improve the identification of minority species in the “255 Bird 
Species” dataset from Kaggle. The results show that, although Focal 
Loss slightly decreased the accuracy of the majority species, it was 
able to increase the F1-score by 0.06 and improve the identification 
of the bottom two, five and ten (minority) species by 37.5%, 15.7% 
and 10.8%, respectively, as well as resulting in an improved overall 
accuracy of 2.96%.  

 
Keywords—Convolutional neural networks, data imbalance, deep 

learning, focal loss, species classification, wildlife conservation. 

I. INTRODUCTION 

HE use of motion sensing camera traps to automatically 
capture images of animals in the wild began in the early 

1990s [1], allowing an efficient and unobtrusive method for 
capturing large amounts of images to be used for tracking 
wildlife populations, observing animal behaviour and 
monitoring endangered species, for example. Extracting 
information from these images, however, has traditionally 
been done by a team of experts and volunteers; a very time 
consuming and costly process [2].  

Recent developments within deep learning, specifically 
convolutional neural networks (CNNs), have drastically 
improved the speed, accuracy and resources required for 
processing camera trap images, reaching accuracies of over 
95% in identifying species [3]. However, the datasets used for 
training these models are generally heavily imbalanced 
(capturing a higher percentage of the majority species in 
comparison with the minority species), resulting in poor 
performance by CNNs in identifying minority species due to 
their relative insignificance to the overall model accuracy [4].  

Although these minority species may not hold much 
significance to a model's overall accuracy, they do hold a great 
deal of significance within wildlife ecology and conservation 
as they are often the species closest to extinction or the species 
with the least amount of research [5].  

This paper aims to investigate the addition of focal loss, a 
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relatively new method for addressing imbalanced data which 
has shown promising results in other fields such as medicine, 
to the current leading deep learning model [24] for species 
identification in an attempt to improve the identification of 
minority species.  

II. BACKGROUND AND RELATED WORK 

A. Machine Learning 

A subset of artificial intelligence, machine learning (ML) is 
a field of study enabling computers to achieve tasks without 
being explicitly programmed to do so [6], inspired by the 
biological ability to learn through experience and achieve 
learned tasks with minimal, or no, external assistance.  

B. Deep Learning 

Today's ML abilities to recognise and classify objects in 
images are due to the advancements in deep learning, a subset 
of ML referring to the use of deep neural networks, defined as 
multilayer artificial neural networks containing two or more 
hidden layers, enabling multiple levels of abstraction [7]. 
Unlike the requirement of feature engineering in traditional 
ML, deep learning enables automatic feature extraction 
through multiple hierarchical layers [8] which could, amongst 
many other applications, emulate the hierarchical organisation 
of biological visual systems as established in the 
neuroscientific field [9], [10]. 

C. Convolutional Neural Networks 

CNNs are a class of deep neural networks for processing 
data that have a grid-like topology [11], such as the grid of 
pixels in image data, by employing convolution operations to 
detect features, and pooling operations to reduce computation. 
Fig. 1 shows a basic schematic diagram of a CNN. By 
operating across all regions of the input, a feature map is 
created representing a filtering of the input with each 
subsequent convolutional layer detecting further sophisticated 
features [12]. 

 

 

Fig. 1 Schematic diagram of a basic CNN architecture [13] 
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D. CNNs for Species Classification 

Gomez et al. [14] compared eight different CNN models 
pretrained on the ImageNet dataset [15] and further trained 
specifically for species classification on the Snapshot 
Serengeti dataset [16] containing 1.5 million images at the 
time for 48 classes of species [2]. Their best performance was 
by the ResNet-101 architecture, achieving 88.9% accuracy. 
However, they had manually cropped the images and trained 
on a simplified version of the dataset containing only the 26 
classes which contained the most images due to the dataset’s 
severe measurement bias.  

Norouzzadeh et al. [4] tested a range of architectures similar 
to Gomez et al., however they trained their network on the 
entire 48 classes of the Snapshot Serengeti dataset without any 
manual cropping with their best model being the ResNet-152 
achieving an accuracy of 92.1% However, their results 
showed extremely low accuracy for rare classes with some 
species being recognized 0% of the time.  

Tabak et al. [17] followed Norouzzadeh et al.’s methods 
and trained their model on camera trap datasets across six 
locations within North America, with a total of 3.7 million 
images across 27 classes of species. Although not as severe as 
the Snapshot Serengeti, their dataset was also imbalanced, 
containing between 1,804 to 1.8 million images per class. 
Their accuracies for classes containing only a few thousand 
images were around 70-80%, an improvement on 
Norouzzadeh et al.’s results; however their dataset had almost 
half the amount of classes and was not as severely imbalanced 
[17].  

Most recently, Schneider et al. [3] compared six modern 
CNNs on the Parks Canada [18] dataset containing 47,279 
images across 55 classes. Their highest performing model, the 
DenseNet201, achieved an accuracy of 95.6%. Their dataset 
was also highly imbalanced, ranging between eight to 8,566 
images per class. Research suggests that their overall accuracy 
is the highest currently achieved for a species classification 
task, however their dataset is not purely species based and 
includes a few classes for humans too. Additionally, their 
accuracy for rare classes was still fairly poor, averaging 63.3% 
for the bottom 10 classes and, as they reported, “species with 
fewer training images available (< 500) produce highly 
variable but often poor [accuracy] [3].”  

E. Methods for Reducing Measurement Bias 

A common issue within CNNs, as well as other deep 
learning networks, is measurement bias, where certain classes 
occur more or less frequently than others during data 
collection resulting in an imbalanced dataset. This leads to a 
bias during training, where a model will learn the features of 
certain classes better than others and could result in poor 
accuracy for the minority classes [19]. In the Snapshot 
Serengeti dataset, for example, the top 50% of the species 
classes account for over 99% of the images [20] which could 
negatively affect a model’s performance in identifying rare 
species as the model would learn that they are of very little 
significance to the overall accuracy.  

Following their main experimental results, Norouzzadeh et 

al. [4] applied three methods to their ResNet-152 model in an 
attempt to mitigate the effects of measurement bias during 
training, namely weighted loss, oversampling and emphasis 
sampling. These methods work by putting more cost on 
incorrectly predicting a rare class than a frequent class, 
repeating examples from rare classes more often, and 
increasing the probability of examples being fed back into the 
model whenever the network misclassifies them, respectively. 
These methods showed promise in improving the accuracy of 
a few rare classes; however they did not improve all rare 
classes and in some cases deteriorated the accuracy, resulting 
in a reduction of the overall accuracy by up to 1.54% [4]. 

Although their dataset contained fewer classes (27 vs. 48 in 
[4]) and was not as severely unbalanced, Tabak et al. [17] 
achieved fairly accurate results for their rare classes by 
applying conditional sampling, where the percentage of 
images used for the training set were increased for minority 
classes. Despite having a decent balance of species, their 
accuracy of classification ~80% still leaves much room for 
improvement. 

Schneider et al. [3] applied three methods to their model in 
an attempt to mitigate the bias of their dataset, namely data 
augmentation, transfer learning and what they refer to as 
classification ratio training. Data augmentation repeats images 
from the minority classes with transformations applied, such 
as rotation, mirroring or colour channel modifications, to 
increase the number of unique images in the class. Transfer 
learning refers to pre-training the model on a separate dataset, 
such as the ImageNet dataset in Schneider et al.’s case, to 
initialise the model before training on the intended dataset. 
Classification ratio training is similar to emphasis sampling, 
where underrepresented classes have a higher probability of 
being presented to the model repeatedly [3]. Although their 
accuracy was 0% in classifying some rare species, there were 
a few rare species which were classified between 60% and 
100% accuracy, suggesting that these methods may be 
effective in some cases.  

F. Focal Loss 

There are many other methods for mitigating the effects of 
measurement bias, some of which, research suggests, have not 
yet been applied to the task of species classification.  

One such method is focal loss, published in a 2018 paper by 
Facebook AI Research (FAIR) [21], to mitigate the effects of 
data imbalance by adding a modulating factor to the 
commonly used cross entropy loss function.  

Research suggests that focal loss has not yet been applied to 
the task of species classification, but research in the medical 
field has shown it to be very effective in mitigating dataset 
imbalance issues. Lotfy et al. [22] compared the use of a cross 
entropy loss function and focal loss function on a CNN used 
for femur fractures classification, showing an increase in 
accuracy of 3% and 6%, respectively, reporting that focal loss 
could “address scenarios with unremarkable imbalance among 
the classes [22].” Pasupa et al. [23] applied focal loss to a 
CNN used to classifying human red blood cell morphology, 
showing that it significantly reduced the bias towards the 
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majority class when compared to the use of an ordinary cross 
entropy loss function. 

The modulating factor which is added to the cross entropy 
function is defined as 1 𝑝 , which includes a tunable 
focusing parameter, 𝛾  0, resulting in the focal loss 
function (1):  
 

𝐹𝐿 𝑝   1 𝑝  𝑙𝑜𝑔 𝑝    (1) 
 

When used in a CNN, for example, as 𝑝 →  1, the model 
has a high confidence in its prediction as 1 𝑝  →  0 and 
therefore down-weights 𝐹𝐿 𝑝  for well classified examples. 
The focusing parameter, 𝛾, adjusts the rate that these examples 
are down-weighted. As reported in the FAIR paper, “In 
practice we use an α-balanced variant of the focal loss [...] as 
it yields slightly improved accuracy over the non-α-balanced 
form” [21], resulting in (2): 

 
𝐹𝐿 𝑝   𝛼 1 𝑝  𝑙𝑜𝑔 𝑝   (2) 

 
The focal loss function results in reduced contribution to the 

loss for well classified examples, so that the network focuses 
more on classifying the rare, minority classes.  

III. MATERIALS AND METHODS 

A. Camera Trap Species Classifier 

The CNN model used in this study, available on GitHub 
under the name “Camera Trap Species Classifier [24]”, was 
developed by Schneider et al. and is the current leading model 
for species classification, achieving 95.6% accuracy [3]. It 
uses the MobileNetV2 model from Tensorflow’s Keras library 
as a base model, with an additional pooling layer and four 
additional dense layers added.  

B. Sigmoid Focal Cross Entropy 

The focal loss function which was applied to the model is 
provided from Tensorflow’s Addons repository, named 
‘SigmoidFocalCrossEntropy’, and is an implementation of the 
focal loss function developed by FAIR. It includes 𝛼 and 𝛾 
parameters and can be passed as the loss function when 
compiling the CNN model, just like any other tensorflow loss 
function [25].  

C. Bird Species Dataset 

The ‘225 Bird Species’ dataset [26], available from Kaggle, 
includes images of 225 different bird species. 20 species (as 
seen in Table Ⅰ) were selected, ranging from 2-248 images per 
species for the training set, and 20-60 images for the testing 
set, with a total of 1,811 and 677 images in the training and 
testing set, respectively.  

The selected dataset was split with 80% training and 20% 
testing images. However, as the original dataset was fairly 
balanced, the training set was manually imbalanced after the 
split in order to properly test the possible improvements focal 
loss would bring in improving the identification accuracy of 
minority species. Fig. 2 shows the imbalance of training 
images across the 20 selected species. Table I shows the list of 

birds and the number of images used for training.  
 

 

Fig. 2 Data distribution of training images for the 20 species in 
alphabetical order 

 
TABLE Ⅰ 

AMOUNT OF TRAINING IMAGES PER SPECIES 

Class Species No. Images 

1 Sora 248 

2 House Finch 207 

3 Wood Duck 179 

4 Northern Parula 164 

5 Shoebill 148 

6 Glossy Ibis 148 

7 Common Poorwill 136 

8 Peacock 132 

9 Ostrich 106 

10 Palila 103 

11 Snowy Owl 89 

12 Puffin 70 

13 Black Skimmer 29 

14 Javan Magpie 15 

15 Carmine Bee-Eater 11 

16 Razorbill 8 

17 Quetzal 6 

18 Crow 6 

19 Robin 4 

20 Araripe Manakin 2 

D. Process and Performance Metrics 

For this study, the model was trained on the training set 
using the cross entropy loss function, as was already defined 
within the model. The model was then trained using the focal 
loss function, with a range of values for 𝛼 and 𝛾 applied as 
recommended within the FAIR paper [21]. The model was 
trained for a total of 20 epochs, and evaluated on the test set 
each time after being trained. The models 𝑤 were set back to 
its initial, untrained state before being tested with different 
combinations of 𝛼and 𝛾 to ensure a fair comparison. 

The comparison of total accuracy for the two, five and ten 
classes with the least amount of training images (the minority 
classes) and the five and ten classes with the most amount of 
training images (the majority classes) was conducted. The two 
classes (19 and 20 in Table I) combined, the five classes (16-
20 in Table I) combined and, the ten classes (11-20 in Table I) 
combined account for 0.3%, 1.4% and 13.3% of the total 
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amount of training images, respectively, and the five classes 
(1-5 in Table I) and the ten classes (1-10 in Table I) account 
for 52.2% and 86.8% of the total amount, respectively.  

The F1-score was also evaluated, which represents a 
balance of accuracy across all classes and is useful for 
evaluating the accuracy across an unbalanced dataset. The F1-
score (5) is calculated with the precision (3) and recall (4) 
values defined as: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   

    
   (3) 

 

𝑟𝑒𝑐𝑎𝑙𝑙   

    
   (4) 

 

 𝐹1  
  

  
    (5) 

 
A reduction in the overall accuracy may still result in a 

higher F1-score if the accuracy is better balanced across all 
classes [3].  

IV. RESULTS AND DISCUSSION 

Table II shows the performance metrics after evaluating the 
network, trained using the cross entropy function and the focal 
loss function with a range of values for 𝛼 and 𝛾 as 
recommended within the FAIR paper [21], with the highest 
accuracy achieved for each row in bold. 

 
TABLE II 

SUMMARY OF PERFORMANCE METRICS COMPARING CROSS ENTROPY AND 

FOCAL LOSS 

Classes 
Cross 

Entropy 
Loss 

Focal Loss 
α=0.25, 

γ=1 
α=0.25, 

γ=2 
α=0.25, 

γ=5 
α=0.5, 
γ=0.5 

α=0.5, 
γ=1 

19-20 13.46 34.48 23.18 42.03 50.00 50.93 

16-20 42.39 51.13 56.63 54.02 20.00 58.04 

11-20 62.70 63.65 68.03 68.80 10.00 73.48 

1-5 95.14 88.70 91.24 92.28 00.00 92.85 

1-10 95.41 92.56 95.25 93.12 00.00 93.48 

f1-score 00.78 00.80 00.83 00.82 00.00 00.84 
total test 
accuracy 

81.68 80.50 84.19 82.87 03.40 84.64 

 
The results show that focal loss improved the accuracy for 

the minority classes in every pair of values for the focal loss 
function, except for the pair where α = 0.5, 𝛾 = 0.5 which, 
interestingly, achieved 100% accuracy for the one class 
(Araripe Manakin) with the least amount of images, and 0% 
for all of the other 19 classes. It can also be seen that all 
versions of the focal loss function decreased the classes 1-5 
and classes 1-10 accuracy slightly, however still resulted in an 
increased F1-score, showing a greater balance of accuracy 
across all classes.  

The best result came from the pair of values α = 0.5, 𝛾 = 1 
which, although worsening the accuracy for the majority 
classes, significantly improved the accuracy of all minority 
classes and increased the F1-score by 0.06.  

Although the accuracy for the majority classes decreased, it 
can be seen that the focal loss function still resulted in an 

increase of the overall model accuracy as the increase in 
accuracy for the minority classes outweighed the decrease of 
accuracy for the majority classes.  

V. CONCLUSION 

The use of CNNs for the identification of species in camera 
trap images has, in recent years, achieved accuracies 
surpassing the accuracy of human classification [4]. The 
accuracy in identifying rare, minority species still remains 
fairly poor due to their relative insignificance to the models’ 
overall accuracy [4], however their identification may be of 
more importance in some cases within wildlife ecology and 
conservation efforts [5].  

In this study, the application of the focal loss function to the 
leading CNN for species identification was investigated to 
improve the identification of rare species. The results showed 
that the focal loss function was able to increase the F1-score 
by 0.06, and improve the identification of classes 19-20, 
classes 16-20 and classes 11-20 (minority, shown in Table I) 
species by 37.5%, 15.7% and 10.8%, respectively.  

Although the focal loss function decreased the accuracy of 
the majority species, and may decrease the overall accuracy in 
larger datasets, it has shown itself to be useful in specific 
applications where the identification of rare or endangered 
species is of greater importance than overall identification 
accuracy.  
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