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Abstract—This paper studies the problem of exponential stability
analysis for recurrent neural networks with time-varying delay.By
establishing a suitable augmented LyapunovCKrasovskii function and
a novel sufficient condition is obtained to guarantee the exponential
stability of the considered system.In order to get a less conservative
results of the condition,zero equalities and reciprocally convex
approach are employed. The several exponential stability criterion
proposed in this paper is simpler and effective. A numerical example
is provided to demonstrate the feasibility and effectiveness of our
results.

Keywords—Exponential stability , Neural networks, Linear matrix
inequality, Lyapunov-Krasovskii, Time-varying.

I. INTRODUCTION

RECURRENT neural networks including Hopfield neural

networks (HNNs) and cellular neural networks (CNNs)

have been studied extensively over the recent decades [1-14]

and have been widely applied within various engineering fields

such as neuro- biology, population dynamics,and computing

technology.Although neural networks can be implemented by

very large scale integrated circuits, there inevitably exist some

delays in neural networks due to the limitation of the speed

of transmission and switching of signals. It is well known that

time-delay is usually a cause of instability and oscillations of

recurrent neural networks. Therefore, the problem of stability

of recurrent neural networks with time delay is of importance

in both theory and practice.
The problem of global exponential stability analysis for

delay neural network has been studied by many investigators

in the past years. In [6],some sufficient conditions are obtained

for existence and global exponential stability of a unique

equilibrium point of competitive neural networks.In [11],the

authors discussed the exponential stabilization of recurrent

neural networks with time-varying and distributed delays. A

control law was obtained by means of linear matrix inequal-

ity.By constructing a new Lyapunov functional and using

a S-procedure, both delay-dependent and delay-independent

stability conditions were developed for static recurrent neural

networks with interval time-varying delays in [15].
Motivated by these observations, it is of great importance to

further investigate the stabilization problem of delayed neural
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networks by making use of the delay interval of neurons. In

this paper,our attention focuses on the exponential stabilization

problem of a class of recurrent neural networks with time

delay.By choosing a new Lyapunov functional which fractions

delay interval and employing different free-weighting matrices

in the upper bounds of integral terms to guarantee the stability

of the delayed neural networks. It is shown that this obtained

conditions have less conservatism. Finally, two numerical

examples are given to show the usefulness of the proposed

criteria.
′ − 1′

and ′T ′ stand for the inverse and transpose of a ma-

trix, respectively;�n denotes an n-dimensional Euclidean

space;�m×n is the set of all m×n real matrices; P > 0 means

that the matrix P is symmetric positive definite,diag(·, ·, ·)
denotes a block diagonal matrix.In block symmetric matrix or

long matrix expression,we use (∗) to represent a term that

is induced by symmetry,I is an appropriately dimensional

identity matrix.

II. PROBLEM STATEMENT

Consider the following neural networks with time-varying

delays:

ż(t) = −Cz(t) +Ag(z(t)) +Bg(z(t− τ(t))) + μ (1)

z(t) = φ(t), t ∈ [−τ, 0] (2)

where z(t) = [z1(t), z2(t), · · ·, zn(t)]T ∈ �n is neuron vector

g(z(t))) = [g1(z1(t)), g2(z2(t)), · · ·, gn(zn(t))]T ∈ �ndenotes

the neuron activation function,C = diag{c1, c2, · · ·, cn} > 0
A ∈ �n×n,B ∈ �n×nare the connection weight matrices

and the delayed connection weight matrices,respectively,

μ =[μ1, μ2, · · ·, μn]
T is constant input vector,and τ(t)is a

continuous time-varying function which satisfies.

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ u (3)

where τ and u are constants.

The following assumption is made in this paper.

Assumption 1.The neuron activation functions gi(t) in (1) are

bounded and satisfy

γ−
i ≤ gi(x)− gi(y)

x− y
≤ γ+

i , x, y ∈ �, x �= y, i = 1, 2, · · ·, n
(4)

Where γ−
i , γ+

i (i = 1, 2, · · ·, n) are positive constants.

Assumption 1 guarantees the existence of an equilibrium

point of system(1) [13].Denote thatz∗ = [z∗1 , z
∗
2 , ···, z∗n]T is the
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equilibrium point. Using the transformationx(·) = z(·) − z∗

system (1) can be converted to the following error system:

ẋ(t) = −Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) (5)

where x(t) = [x1(t), x2(t), · · ·, xn(t)]
T ∈ �n is the neuron

vector,f(x(t)) = [f1(x1(t)), f2(x2(t)), · · ·, fn(xn(t))]
T ∈ �n

denotes the neuron activation function.
let fi(x(t)) = gi(zi(·))− gi(z

∗
i ), i = 1, 2, · · ·, n.we can get

γ−
i ≤ fi(xi(t))

xi(t)
≤ γ+

i , fi(0) = 0, i = 1, 2, · · ·, n (6)

Definition 1.The equilibrium point of system (5) is said to be

globally exponentially stable,if there exist scalars k ≥ 0 and

β > 0 such that

‖x(t)‖ ≤ βe−kt sup
−τ≤s≤0

‖φ(s)− z∗‖, ∀t > 0. (7)

Lemma 1 [14].For any constant matrixZ ∈ �n×n,Z = ZT > 0,

scalars h2 > h1 > 0 such that the following integrations are

well defined, then

(h2 − h1)

∫ h1

h2

xT (s)Zx(s)ds ≥
∫ h1

h2

xT (s)dsZ

∫ h1

h2

x(s)ds

(8)

Lemma 2 [17]. For all real vectors a, b and all matrix Q > 0
with appropriate dimensions,if follows that:

2aT b ≤ aTQa+ bTQ−1b (9)

Lemma 3.By (6) the following inequalities hold

0 ≤
∫ xi(t)

0

[fi(s)− γ−
i s]ds ≤ [fi(xi(t))− γ−

i xi(t)]xi(t)

(10)

0 ≤
∫ xi(t)

0

[γ+
i s− fi(s)]ds ≤ [γ−

i xi(t) + fi(xi(t))]xi(t)

(11)

Proof: Let Fi(s) = fi(s)− γ−
i s,we have

Fi(s)

s
=

fi(s)

s
− γ−

i ≥ 0

Therefore,∫ xi(t)

0

[fi(s)− γ−
i s]ds ≥ 0

By Assumption 1

D+Fi(s) = lim
ψ→0+

Fi(s+ ψ)− Fi(s)

ψ

= lim
ψ→0+

fi(s+ ψ)− γ−
i (s+ ψ)− fi(s) + γ−

i s

ψ

= lim
ψ→0+

(
fi(s+ ψ)− fi(s)

ψ
− γ−

i ) ≥ 0

then function Fi(s) is a monotone nondecreasing.we have the

following inequality

0 ≤
∫ xi(t)

0

[fi(s)− γ−
i s]ds ≤ [fi(xi(t))− γ−

i xi(t)]xi(t)

(11) is similar to proof (10) and is omitted here.

III. MAIN RESULTS

In this section, we propose a new exponential criterion for

the neural networks with time-varying delays system. Now,

we have the following main results.
Theorem 1.For given scalars Γ1 = diag(γ−

1 , γ−
2 , · · ·, γ−

n )
,Γ2 = diag(γ+

1 , γ+
2 , · · ·, γ+

n ),u ≤ 1,the system(5) is globally

exponentially stable with the exponential convergence rate

index k if there exist symmetric positive definite matrices

P ,Qi(i = 1, 2, · · ·, 4),Ri(i = 1, 2, 3),S =

⎡
⎣S11 S12 S13

∗ S22 S23

∗ ∗ S33

⎤
⎦

positive diagonal matrices Λ = diag(λ1, λ2, · · ·, λn),Δ =
diag(δ1, δ2, · · ·, δn), M1,M2,such that the following LMIs

hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 e13 e14 e15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ e44 e45 0 0
∗ ∗ ∗ ∗ e55 e56 e57
∗ ∗ ∗ ∗ ∗ e66 e67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (12)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 e13 0 f15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ f44 f45 f46 0
∗ ∗ ∗ ∗ f55 f56 e57
∗ ∗ ∗ ∗ ∗ f66 e67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (13)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 e13 0 f15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ g44 0 g46 g47
∗ ∗ ∗ ∗ e55 e56 e57
∗ ∗ ∗ ∗ ∗ e66 g67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (14)

where

e11 = 2kP − PC − CP − 4kΓ1Λ− C(Γ2Δ− Γ1Λ)

+ (
τ

3
)2C(R1 +R2 +R3)C − 2Γ1M1Γ2 − (Γ2Δ− Γ1Λ)C

+
4∑

i=1

Qi + S11 − e−
2
3kτR3 + 4kΓ2Δ,

e12 = PA+ 2kΛ− 2kΔ− (Λ−Δ)C + (Γ2Δ− Γ1Λ)A

− (
τ

3
)2C(R1 +R2 +R3)A+M1(Γ1 + Γ2),

e13 = PB + (Γ2Δ− Γ1Λ)B − (
τ

3
)2C(R1 +R2 +R3)B,

e14 = 3/2e−
2
3kτR3, e15 = S12,

e22 = (Λ−Δ)A+AT (Λ−Δ) + (
τ

3
)2AT (R1 +R2 +R3)A

− 2M1,

e23 = (Λ−Δ)B + (
τ

3
)2AT (R1 +R2 +R3)B,

e33 = (
τ

3
)2BT (R1 +R2 +R3)B − 2M2,

e34 = M2(Γ1 + Γ2), e45 = 2e−
2
3kτR3,
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e44 = −e−2kτ (1− u)Q1 − 3e−
2
3kτR3 − 2Γ1M2Γ2,

e55 = −e−
2
3kτQ2 + S22 − e−

2
3kτS11 − e−

2
3kτR3,

− e−
4
3kτR2, e57 = −e−

2
3kτS13,

e56 = S23 − e−
2
3kτS12 + e−

4
3kτR2,

e66 = −e−
4
3kτQ3 + S33 − e−

4
3kτR2,

− e−2kτR1 − e−
2
3kτS22,

e67 = −e
2
3kτS23 + e−2kτR1,

e77 = −e−2kτQ4 − e−
2
3kτS33 − e−2kτR1,

f15 = S12 + e−
2
3kτR3, f45 = e−

4
3kτ × 3

2
R2,

f44 = −e−2kτ (1− u)Q1 − 3e−
4
3kτ2R2

− 2Γ1M2Γ2, f46 = e−
4
3kτ × 2R2,

f55 = −e−
2
3kτQ2 + S22 − e−

2
3kτS11 − e−

2
3kτR3,

− e−
4
3kτR2, f56 = S23 − e−

2
3kτS12,

f66 = −e−
4
3kτQ3 + S33 − e−

4
3kτR2,

− e−2kτR1 − e−
2
3kτS22,

g46 = e−2kτ × 3

2
R1, g47 = 2e−2kτR1,

g44 = −e−2kτ (1− u)Q1 − 3e−2kτR1

− 2Γ1M2Γ2

g67 = −e
2
3kτS23

V (xt) =
5∑

i=1

Vi(xt)

where

V1(xt) = e2ktxT (t)Px(t)

V2(xt) = 2e2kt
n∑

i=1

[

∫ xi(t)

0

λi(fi(s)− γ−
i s)ds

+

∫ xi(t)

0

δi(γ
+
i s− fi(s))ds]

V3(xt) =

∫ t

t−τ(t)

e2ksxT (s)Q1x(s)ds

+

∫ t

t− τ
3

e2ksxT (s)Q2x(s)ds

+

∫ t

t− 2
3 τ

e2ksxT (s)Q3x(s)ds

+

∫ t

t−τ

e2ksxT (s)Q4x(s)ds

V4(xt) =

∫ t

t− τ
3

e2ks

⎡
⎣ x(s)
x(s− τ

3 )
x(s− 2

3τ)

⎤
⎦
T

S

⎡
⎣ x(s)
x(s− τ

3 )
x(s− 2

3τ)

⎤
⎦ ds

V5(xt) =
τ

3

∫ − 2
3 τ

−τ

∫ t

t+θ

e2ksẋ(s)TR1ẋ(s)dsdθ

+
τ

3

∫ − τ
3

− 2
3 τ

∫ t

t+θ

e2ksẋ(s)TR2ẋ(s)dsdθ

+
τ

3

∫ 0

− τ
3

∫ t

t+θ

e2ksẋ(s)TR3ẋ(s)dsdθ

The time derivative of V (xt) along the trajectory of system

(5) is given by

V̇ (xt) =
5∑

i=1

V̇i(xt)

where

V̇1(xt) = 2ke2ktxT (t)Px(t) + 2e2ktxT (t)Pẋ(t) (15)

V̇2(xt) = 4ke2kt
n∑

i=1

[

∫ xi(t)

0

λi(fi(s)− γ−
i s)ds

+

∫ xi(t)

0

δi(γ
+
i s− fi(s))ds] + 2e2kt[(fT (x(t))

− xT (t)Γ1)Λẋ(t) + (xT (t)Γ2 − fT (x(t)))Δẋ(t)]

≤ 4ke2kτ [(f(x(t))− xT (t)Γ1)Λx(t) + (xT (t)Γ2

− fT (x(t)))Δx(t)] + 2e2kτ [fT (x(t))(Λ−Δ)

+ xT (t)(Γ2Δ− Γ1Λ)]ẋ(t)
(16)

V̇3(xt) ≤ e2ktxT (t)(

4∑
i=1

Qi)x(t)

− e2k(t−τ)(1− u)xT (t− τ(t))Q1x(t− τ(t))

− e2k(t−
τ
3 )xT (t− τ

3
)Q2x(t− τ

3
)

− e2k(t−
2τ
3 )xT (t− 2τ

3
)Q3x(t− 2τ

3
)

− e2k(t−τ)xT (t− τ)Q4x(t− τ)

(17)

V̇4(xt) = e2kt

⎡
⎣ x(t)
x(t− τ

3 )
x(t− 2

3τ)

⎤
⎦
T

S

⎡
⎣ x(t)
x(t− τ

3 )
x(t− 2

3τ)

⎤
⎦

− e2k(t−
τ
3 )

⎡
⎣ x(t− τ

3 )
x(t− 2

3τ)
x(t− τ)

⎤
⎦
T

S

⎡
⎣ x(t− τ

3 )
x(t− 2

3τ)
x(t− τ)

⎤
⎦

(18)

V̇5(xt) = (
τ

3
)2e2ktẋT (t)(R1 +R2 +R3)ẋ(t)

− τ

3

∫ t

t− τ
3

e2ksẋT (s)R3ẋ(s)ds

− τ

3

∫ t− τ
3

t− 2
3 τ

e2ksẋT (s)R2ẋ(s)ds

− τ

3

∫ t− 2
3 τ

t−τ

e2ksẋT (s)R1ẋ(s)ds

(19)

Proof: Construct a Lyapunov-Krasovskii function as

follows:
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(1) When 0 ≤ τ(t) ≤ τ
3 .Based on the bounds lemma of[16],we

have

−τ

3

∫ t

t− τ
3

e2ksẋT (s)R3ẋ(s)ds ≤ e2k(t−
τ
3 )

⎡
⎣ x(t)
x(t− τ(t))
x(t− τ

3 )

⎤
⎦
T

×
⎡
⎣−R3 2R3 0

R3 −3R3 2R3

0 2R3 −R3

⎤
⎦
⎡
⎣ x(t)
x(t− τ(t))
x(t− τ

3 )

⎤
⎦

(20)

− τ

3

∫ t− 2
3 τ

t−τ

e2ksẋT (s)R1ẋ(s)ds ≤ −e2k(t−τ)

× [x(t− 2

3
τ)− x(t− τ)]TR1[x(t− 2

3
τ)− x(t− τ)]

(21)

− τ

3

∫ t− τ
3

t− 2
3 τ

e2ksẋT (s)R2ẋ(s)ds ≤ −e2k(t−
2
3 )τ

× [x(t− τ

3
)− x(t− 2

3
τ)]TR2[x(t− τ

3
)− x(t− 2

3
τ)]

(22)

(2) When τ
3 ≤ τ(t) ≤ 2

3τ .we have

−τ

3

∫ t− τ
3

t− 2
3 τ

e2ksẋT (s)R2ẋ(s)ds ≤ e2k(t−
2
3 τ)

⎡
⎣ x(t− τ

3 )
x(t− τ(t))
x(t− 2

3τ)

⎤
⎦
T

×
⎡
⎣−R2 2R2 0

R2 −3R2 2R2

0 2R2 −R2

⎤
⎦
⎡
⎣ x(t− τ

3 )
x(t− τ(t))
x(t− 2

3τ)

⎤
⎦

(23)

− τ

3

∫ t− 2
3 τ

t−τ

e2ksẋT (s)R1ẋ(s)ds ≤ −e2k(t−τ)

× [x(t− 2

3
τ)− x(t− τ)]TR1[x(t− 2

3
τ)− x(t− τ)]

(24)

− τ

3

∫ t

t− τ
3

e2ksẋT (s)R3ẋ(s)ds ≤ −e2k(t−
τ
3 )

× [x(t)− x(t− τ

3
)]TR3[x(t)− x(t− τ

3
)]

(25)

(3) When 2
3τ ≤ τ(t) ≤ τ .Based on the bounds lemma

of[16],we have

−τ

3

∫ t− 2
3 τ

t−τ

e2ksẋT (s)R1ẋ(s)ds ≤ e2k(t−τ)

⎡
⎣ x(t− 2

3τ)
x(t− τ(t))
x(t− τ)

⎤
⎦
T

×
⎡
⎣−R1 2R1 0

R1 −3R1 2R1

0 2R1 −R1

⎤
⎦
⎡
⎣ x(t− 2

3τ)
x(t− τ(t))
x(t− τ)

⎤
⎦
(26)

− τ

3

∫ t

t− τ
3

e2ksẋT (s)R3ẋ(s)ds ≤ −e2k(t−
τ
3 )

× [x(t)− x(t− τ

3
]TR3[x(t)− x(t− τ

3
)]

(27)

− τ

3

∫ t− τ
3

t− 2
3 τ

e2ksẋT (s)R2ẋ(s)ds ≤ −e2k(t−
2
3 )τ

× [x(t− τ

3
)− x(t− 2

3
τ)]TR2[x(t− τ

3
)− x(t− 2

3
τ)]

(28)

In order to derive less conservative results,By (6) we add the

following inequalities with positive diagonal matrices M1,M2

e2kt[−2fT (x(t))M1f(x(t)) + 2xT (t)M1(Γ1 + Γ2)f(x(t))

− 2xT (t)Γ1M1Γ2x(t)] ≥ 0
(29)

e2kt[−2fT (x(t− τ(t)))M2f(x(t− τ(t))) + 2xT (t− τ(t))M2

× (Γ1 + Γ2)f(x(t− τ(t))− 2xT (t− τ(t))Γ1M2Γ2

× x(t− τ(t))] ≥ 0
(30)

(1) When 0 ≤ τ(t) ≤ τ
3 . According to (12),from (15) −

(22), (29)− (30).then one can obtain

V̇ (xt) ≤ e2kt[ξT (t)Eξ(t)] ≤ 0 (31)

where

ξT (t) =[xT (t), fT (x(t)), fT (x(t− τ(t))), xT (t− τ(t)),

xT (t− τ

3
), xT (t− 2

3
τ), xT (t− τ)]

(2) When τ
3 ≤ τ(t) ≤ 2

3τ . According to (13),from (15) −
(19), (23)− (25), (29)− (30).then one can obtain

V̇ (xt) ≤ e2kt[ξT (t)Fξ(t)] ≤ 0 (32)

(3) When 2
3τ ≤ τ(t) ≤ τ , According to (14),from (15) −

(19), (26)− (30).then one can obtain

V̇ (xt) ≤ e2kt[ξT (t)Gξ(t)] ≤ 0 (33)

Therefore

V (xt) ≤ V (x0)

On the other hand,

V1(x0) ≤ λmax(P )‖x(0)‖2 ≤ λmax(P ) sup
−τ≤s≤0

‖x(s)‖2

(34)

V2(x0) ≤ 2[f(x(0))− Γ1x(0)]
TΛx(0) + 2[Γ2x(0)

− f(x(0))]TΔx(0)

≤ 2λmax(Γ2 − Γ1)(λmax(Λ) + λmax(Δ))

× sup
−τ≤s≤0

‖x(s)‖2
(35)

V3(x0) ≤ (
τ

3
λmax(Q1) +

2τ

3
λmax(Q2) + τλmax(Q3)

+
τ

3
λmax(Q4) +

2τ

3
λmax(Q5) + τλmax(Q6))

× sup
−τ≤s≤0

‖x(s)‖2
(36)

V4(x0) ≤
∫ 0

− τ
3

e2ks

⎡
⎣ x(s)
x(s− τ

3 )
x(s− 2τ

3 )

⎤
⎦
T

S

⎡
⎣ x(s)
x(s− τ

3 )
x(s− 2τ

3 )

⎤
⎦ ds (37)
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≤
∫ 0

− τ
3

[xT (s)S11x(s) + 2xT (s)S12x(s− τ

3
)

+ 2xT (s)S13x(s− 2

3
τ) + xT (s− τ

3
)S22x(s− τ

3
)

+ 2xT (s− τ

3
)S23x(s− 2

3
τ) + xT (s− 2

3
τ)S33

× x(s− 2

3
τ)]ds

(38)

According to Lemma3

V4(x0) ≤ τ

3
[λmax(S11) + λmax(S12) + λmax(S13)]‖x(s)‖2

+
τ

3
[λmax(S12) + λmax(S13) + λmax(S22)]

× ‖x(s− τ

3
)‖2 + τ

3
[λmax(S22) + λmax(S23)

+ λmax(S33)]‖x(s)‖2
≤ [λmax(S11) + 2λmax(S12) + 2λmax(S13)

+ λmax(S22) + 2λmax(S23) + λmax(S33)]

× sup
−τ≤s≤0

‖x(s)‖2

(39)

V5(x0) ≤ τ

3
λmax(R1)

∫ − 2τ
3

−τ

∫ 0

θ

ẋT (s)ẋ(s)dsdθ

+
τ

3
λmax(R2)

∫ − τ
3

− 2τ
3

∫ 0

θ

ẋT (s)ẋ(s)dsdθ

+
τ

3
λmax(R3)

∫ 0

− τ
3

∫ 0

θ

ẋT (s)ẋ(s)dsdθ

≤ τ3[λmax(R1)× 5

18
+ λmax(R2)× 1

6

+ λmax(R3)× 1

18
][λmax(C

TC) + γ2λmax(A
TA)

+ γ2λmax(B
TB)] sup

−τ≤s≤0
‖x(s)‖2

(40)

According to (34)−(39),we can get the following inequalities:

V (x(0)) ≤ ω sup
−τ≤s≤0

‖x(s)‖2 (41)

where

ω = λmax(P ) + 2λmax(Γ2 − Γ1)(λmax(Λ) + λmax(Δ))

+
τ

3
λmaxQ1 +

2τ

3
λmaxQ2 + τλmaxQ3 +

τ

3
λmaxQ4

+
2τ

3
λmaxQ5 + τλmaxQ6 + λmax(S11) + 2λmax(S12)

+ 2λmax(S13) + λmax(S22) + 2λmax(S23) + λmax(S33)

+ τ3[λmax(R1)× 5

18
+ λmax(R2)× 1

6
+ λmax(R3)× 1

18
]

× [λmax(C
TC) + γ2λmax(A

TA) + γ2λmax(B
TB)]

(42)

On the other hand,we have

V (x(t)) ≥ e2ktλmin(P )‖x(t)‖2 (43)

Therefore

‖x(t)‖ ≤
√

ω

λmin(P )
e−kt sup

−τ≤s≤0
‖x(s)‖ (44)

Thus,according to definition1 the system (5) is exponentially

stable ,the proof is completed.

Corollary 1.For given scalars Γ1 = diag(γ−
1 , γ−

2 , · · ·, γ−
n )

,Γ2 = diag(γ+
1 , γ+

2 , · · ·, γ+
n ),τ ≤ 1,the system(5) is globally

exponentially stable with the exponential convergence rate

index k if there exist symmetric positive definite matrices

P ,Qi(i = 2, 3, 4),Ri(i = 1, 2, 3),andS =

⎡
⎣S11 S12 S13

∗ S22 S23

∗ ∗ S33

⎤
⎦

positive diagonal matrices M1,M2,Λ = diag(λ1, λ2, · · ·, λn),
Δ = diag(δ1, δ2, · · ·, δn) such that the following LMIs hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 e13 e14 e15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ e44 e45 0 0
∗ ∗ ∗ ∗ e55 e56 e57
∗ ∗ ∗ ∗ ∗ e66 e67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (45)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11 e12 e13 0 f15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ f44 f45 f46 0
∗ ∗ ∗ ∗ f55 f56 f57
∗ ∗ ∗ ∗ ∗ f66 e67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (46)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11 e12 e13 0 f15 S13 0
∗ e22 e23 0 0 0 0
∗ ∗ e33 e34 0 0 0
∗ ∗ ∗ g44 0 g46 g47
∗ ∗ ∗ ∗ e55 e56 e57
∗ ∗ ∗ ∗ ∗ e66 g67
∗ ∗ ∗ ∗ ∗ ∗ e77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (47)

where

e11 = 2kP − PC − CP − 4kΓ1Λ− C(Γ2Δ− Γ1Λ)

+ (
τ

3
)2C(R1 +R2 +R3)C − (Γ2Δ− Γ1Λ)C

+
4∑

i=2

Qi + S11 − e−
2
3kτR3 + 4kΓ2Δ− 2Γ1M1Γ2

e12 = PA+ 2kΛ− 2kΔ− (Λ−Δ)C + (Γ2Δ− Γ1Λ)A

− (
τ

3
)2C(R1 +R2 +R3)A+M1(Γ1 + Γ2)

e13 = PB + (Γ2Δ− Γ1Λ)B − (
τ

3
)2C(R1 +R2 +R3)B

e14 = 3/2e−
2
3kτR3, e15 = S12

e22 = (Λ−Δ)A− 2M1 + (
τ

3
)2AT (R1 +R2 +R3)A

+AT (Λ−Δ), e44 = −3e−
2
3kτR3 − 2Γ1M2Γ2
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e23 = (Λ−Δ)B + (
τ

3
)2AT (R1 +R2 +R3)B

e33 = (
τ

3
)2BT (R1 +R2 +R3)B − 2M2

e34 = M2(Γ1 + Γ2), e45 = 2e−
2
3kτR3

e55 = −e−
2
3kτQ2 + S22 − e−

2
3kτS11 − e−

2
3kτR3

− e−
4
3kτR2, e57 = −e−

2
3kτS13

e56 = S23 − e−
2
3kτS12 + e−

4
3kτR2,

e66 = −e−
4
3kτQ3 + S33 − e−

4
3kτR2

− e−2kτR1 − e−
2
3kτS22

e67 = −e
2
3kτS23 + e−2kτR1, e57 = −e−

2
3kτS13,

e77 = −e−2kτQ4 − e−
2
3kτS33 − e−2kτR1

f15 = S12 + e−
2
3kτR3, f45 = e−

4
3kτ × 3

2
R2,

f44 = −3e−
4
3kτ2R2 − 2Γ1M2Γ2

f55 = −e−
2
3kτQ2 + S22 − e−

2
3kτS11 − e−

2
3kτR3

− e−
4
3kτR2, f46 = e−

4
3kτ × 2R2

f56 = S23 − e−
2
3kτS12, g15 = S12 + e−

2
3kτR3

f66 = −e−
4
3kτQ3 + S33 − e−

4
3kτR2 − e−2kτR1 − e−

2
3kτS22

g47 = 2e−2kτR1, g44 = −3e−2kτR1 − 2Γ1M2Γ2,

g67 = −e
2
3kτS23

Proof: Choosing Q1 = 0 in Theorem 1,one can easily

obtains this result.

Remark 1. This paper not only divides the delay

interval[0, d] into [0, d/2] and [d/2, d],but also divides [0, d]
into [0, d/3],[d/3, 2d/3] and [2d/3, d].Each segments has a

different Lyapunov matrix,which have potential to yield less

conservative results.

IV. EXAMPLES

In this section,we provide the simulation of examples to

illustrate the effectiveness of our method.

C =

[
2 0
0 3.5

]
, A =

[−1 0.5
0.5 −1

]
, B =

[−0.5 0.5
0.5 0.5

]

Γ1 = diag(0, 0), Γ2 = diag(1, 1)

First,the maximum delay bounds τ are shown under different

Second, let u = 0 ,the maximum exponential convergence

TABLE I
ALLOWABLE UPPER BOUND OF τ WITH VARIOUS k

k 0.5 1
[18] 2.59 0.97
[19] 2.82 1.18
[20] 2.90 1.32
[22] 2.94 1.35

this works 3.58 1.58

TABLE II
ALLOWABLE UPPER BOUND OF k WITH VARIOUS τ

τ 0.5 1 1.5
[18] 1.35 0.98 0.75

this works 1.45 1.17 1.01

Then,when k = 0.25,u = 0.8 or unknown,the maximum delay

TABLE III
ALLOWABLE UPPER BOUND OF τ WITH VARIOUS u

u 0.8 Unknown(corollary)
[19] 2.8 1.04
[21] 2.9 1.40
[22] 3.5 2.53

this works 4.76 4.69

C =

⎡
⎣6 0 0
0 5 0
0 0 7

⎤
⎦ , A =

⎡
⎣ 1.2 −0.8 0.6

0.5 −1.5 0.7
−0.8 −1.2 −1.4

⎤
⎦

B =

⎡
⎣−1.4 0.9 0.5
−0.6 1.2 0.8
0.5 −0.7 1.1

⎤
⎦

Γ1 = diag(−1.2, 0,−2.4), Γ2 = diag(0, 1.4, 0)

For various τ, u,the maximum exponential convergence rate k

TABLE IV
ALLOWABLE UPPER BOUND OF k FOR EXAMPLE 2

(τ, u) (0.5,0) (0.5,0.5) (0.6,0.5) (0.8,0.5)
Theorem 1 0.57 0.11 0.09 0.07

V. CONCLUSION

proposed. A suitable Lyapunov functional has been proposed

to derive some less conservative delay-dependent stability

criteria by using the free-weighting matrices method and

the convex combination theorem. Finally, numerical examples

have been given to illustrate the effectiveness of the proposed

method.
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