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Abstract—In present work the problem of the ITER fusion 

plasma neutron source parameter reconstruction using only the 

Vertical Neutron Camera data was solved. The possibility of neutron 

source parameter reconstruction was estimated by the numerical 

simulations and the analysis of adequateness of mathematic model 

was performed. The neutron source was specified in a parametric 

form. The numerical analysis of solution stability with respect to data 

distortion was done. The influence of the data errors on the 

reconstructed parameters is shown: 

• is reconstructed with errors less than 4% at all examined values 

of δ (until 60%);  

• is determined with errors less than 10% when δ do not overcome 

5%; 

• is reconstructed with relative error more than 10 %; 

• integral intensity of the neutron source is determined with error 

10% while δ error is less than 15%; 

where -error of signal measurements, (R0,Z0), the plasma center 

position,- µparameter of neutron source profile. 

 

Keywords—ITER, neutronsource, neutron source profile 

reconstruction, Vertical Neutron Camera.  

I. INTRODUCTION 

HE knowledge of neutron emissivity profile is essential 

for accurate measurement of total fusion power, position 

and dynamics of behavior of neutron source. The knowledge 

of neutron emissivity profile is necessary to study the D-T 

fusion plasma ignition conditions. The Vertical Neutron 

Camera of ITER should provide time- and space-resolved 

measurements of the neutron emissivity and neutron flux, 

fusion power density and alpha-particle density profile 

providing information on ITER operation performance. The 

VNC of ITER is composed of two fan-shaped collimating 

structures. The total number of collimators is 11. The number 

of lines of view in the bottom part of VNC is 5, and in the 

upper part – 6. 

Task of the parameters of neutron source reconstruction by 

VNC measurements can be reduced to the inverse 

tomographic problem. Such problems arise in many fields of 

science, medicine and industry when it is important to 

determine the internal structure of an object without disturbing 
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its integrity. Computed tomography is one of the most 

common techniques used to solve those problems. A lot of 

papers are dedicated to the developing of computed 

tomography methods and fundamental of them should be 

noted [1]-[7]. 

Usually tomographic problems are classified by the type of 

radiation source into transmission tomography and emission 

tomography. In the first case the object is scanned by external 

radiation (x-ray, ultrasound, radio waves, etc.). In the second 

case the intrinsic radiation of the object in some spectral range 

is used. There is also classification of tomographic schemes 

based on geometry of the emitters and/or detectors (parallel 

scheme are used in medical and technical X-ray tomography, 

cone scheme are used in technical tomography, spiral scheme, 

etc). 

The problem considered in this document relates to the 

special scheme of flat conical emission tomography with a 

fixed position of limited number of the detectors. Similar 

problems are met before in the problem of the optical probing 

of plasma (see [4]). 

Set of issues appears during the solving of the inverse 

problems but two of them are essential: the problem of 

uniqueness of the solution that describes the intrinsic structure 

of the object under study and the problem of instability of 

approximate solution obtained in the calculations to the errors 

of experimental data. The problem of uniqueness has been 

studied for different special cases of the tomographic schemes 

in [2]-[7]. The main feature of these schemes is the 

assumption that the investigator has an infinite amount of 

tomographic data ("projections") and these data correspond to 

the study of the object from the "different sides". For example 

radiation of the plasma beam is known in the optical emission 

scheme can be detected in the plane of its cross-section from 

each side [4]. Similarly projections are considered in the 

scheme of X-ray tomography of the parallel rays can be 

derived by the scanning of the object under any angle in any 

plane of its cross section. The proper "theorems of 

uniqueness" are proved with a certain degree of "smoothness" 

of the solution. In this case any assumptions about type of the 

solution are not made. 

In our case the lack of information on the tomographic 

projections is obvious: they are limited in number and fixed in 

position. It makes us to find the problem solution in the 

special (parametric) form, i.e. we introduce some assumptions 
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about the function f and sometimes its constituent parameters. 

The peculiarity of inverse tomographic problems is the 

instability of solutions obtained using procedures of the 

precise handling of the tomographic operator (Radon operator, 

the operator in Abel equations, [1]-[7]) against perturbations 

of data measurement errors. Different techniques have been 

developed to prevent or reduce this instability: inverse 

filtering techniques, ridge regression etc. 

In the case of the solution parameterization the problem of 

instability is often an issue of the ill conditioning solution of 

the corresponding system of equations with unknown 

parameters. Therefore for each considered parameterization 

numerical analysis of stability (conditioning) to perturbations 

of data of the inverse problem is necessary. Instability or ill-

conditioning must be eliminated by including additional 

information about desired parameters in the procedure of the 

inverse problem solving (for example to set the range of 

possible values of the parameters and select the "good" initial 

approximation of the unknown parameters in the iterative 

search etc.). Procedures such as ridge regression can also be 

used [8]. It should also be noted that the conditioning of the 

problem of the object parameters finding is reducing as the 

number of desired parameters grows often in a catastrophic 

manner. It also requires a numerical analysis. 

In this paper a numerical simulation of the possibility of 

neutron source parameters reconstruction is investigated. The 

analysis of adequacy of obtained approximate model 

parameters to experimental data and the numerical stability 

analysis of the inverse problem with respect to data 

perturbations are also carried out. In the numerical solution of 

the neutron source parameters reconstruction the following 

tasks are solved: 

• Determination of the full intensity of the neutron source 

within 10% accuracy; 

• Determination of the horizontal position of the neutron 

source center within 10% accuracy; 

• Determination of the vertical position of the neutron 

source center within 10% accuracy; 

• Determination of the radial asymmetry; 

• Determination of the neutron source distribution shape. 

II. MATHEMATICAL PROBLEM OF THE NEUTRON SOURCE 

PROFILE RECOVERY 

Fig. 1 shows a scheme of a Vertical Neutron Camera 

(VNC), which is used in the calculations. Desired area where 

plasma locates and contour lines of a source are shown is 

marked as a large circle. The calculations have been 

performed for the standard density distributions of ITER 

neutron source (IDM №: ITER_D_2FV7QR). The number of 

lines of sight in the lower VNC is 5 and the upper VNC is 6. 

Digits 1 - 11 show the numbering of the detectors. The closed 

thin curves on the figure refer to contour lines of the magnetic 

field. Straight lines indicate the lines of sight determined by 

detectors’ and collimators’ locations. In a mathematical model 

these lines Li are defined by the parametric equations. 

[ ]0 0 1 2, , , ,

1,...

i i i i i iR R a t Z Z b t t t t

i M

= + = + ∈

=      

 (1) 

 

Here (R, Z) is the coordinates of Li line points, (ai,bi) is the 

direction vector of the i-th line, (R0i, Z0i) is the radiation 

registration point (the position of detector), t1i,t2i are the 

parameters which determine the intersection points of the i-th 

ray with the large circle. M is the number of sight lines. The 

numbers of lines of sight corresponds to the detector numbers 

in this paper and are shown as digits in Fig. 1. 

 

 

Fig. 1 VNC lines of sight 
 

In general the density of the neutron radiation source 

located at the point (R0, Z0) and detected at the point (R, Z) is 

written as: 

 

( )0 0 0 0, , , , , σ exp{ ( , ,σ}R Z R Z N f R R Z Zε µ µ= − − −
� �

   (2)
 

 

Here N is the factor of normalization that determines the 

total neutron yield, µ is the parameter of the neutron source 

distribution shape, f is a function that defines the shape of 

contour lines of the source and σ��� is a vector of parameters 

defining that shape. Thus the unknown source of neutrons is 

determined by the function f and parameters , ��, ��, �, σ���. 

In the experiment neutron fluxes at the detectors are 

modeled as integrals along lines Li : 

 

 0 0( , , , , , ) , 1,...
i

i
L

I R Z R Z dl i Mε µ σ= =∫
�

 (3) 

Normalized data are used for calculations: 
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Their dependence on unknown parameters	, ��, ��, �, 
�, 

can be written as a set of equations (5): 
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�
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 (5) 

 

The unknown parameters are the solution of (5).  

The set of (5) does not depend on N. If the unknown 

parameters 	, ��, ��, �, 
�were found the value of N will be 

calculated:     

        

 

( ){ }

1/2
2

1

2
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jj
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=

=

 =  
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∑

∑ ∫
�

 (6) 

 

It is obvious the inverse problem to be ill-posed without 

knowledge of the continuous function f. It means that this 

problem has not the only solution and the solution is instable 

with respect to perturbations of the experimental data. 

Moreover, if a particular type of the function fis postulated, set 

of equations (5) may not have any solution because the 

function fis not physically correct. For a given function f the 

problem of stability of the set of equations (5) solution is still 

valid. Otherwise it is replaced by the problem of ill-

conditioning of this set of equations. 

First, the parametric dependence of 	�� � ��, � � ��, 
�
 is 

postulated: the type of the function f as well as the type and a 

number of parameters
�are considered to be known. We 

introduce the normalized residual as a measure of 

experimental data divergence from the calculated values for 

the given parameters 
� : 
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The problem of the residual minimization is solved. In other 

words acceptable parameters ��
�, �� ,

� ��, 
�� that minimize the 

residual are found: 

 

 
* * * *

0 0 0 0( , Z , , ) min ( , , , )F R F R Zµ σ µ σ=
� �

 (8) 

 

Then obtained optimal parameters ��
� , �� ,

� ��, 
�� are verified 

for adequacy in this model: minimum residual 
* * * *

0 0( , Z , , )F R µ σ
�

 is compared with the relative standard 

error δ of the value Ji. This relative standard error δis 

calculated using the values ∆(Ii) (absolute error of the 

measurement of neutron flux in the i-th detector) and is given 

by: 

 

 

2 2

1 1

2 2

1 1

( ) (J )
M M

i ii i

M M

i ii i
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I J
δ = =

= =

∆ ∆
= =∑ ∑

∑ ∑
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Here 
2

1

( )
( ) i

i
M

jj

I
J

I
=

∆
∆ =

∑
and 

2

1
1

M

ii
J

=
=∑ . Thus the 

relative standard error δ of measured value Ii is the same as the 

error of the Ji. Parameters��
�, �� ,

� ��, 
��are considered to be 

appropriate in the model (1) if the inequality  

 

 
* * * *

0 0
( , Z , , )F R µ σ δ≤

�

 (10) 

 

is correct. 

If the type of the function f and its parameters are physically 

adequate (10) is satisfied. If the inequality (10) is not satisfied 

then the function f is believed to be chosen incorrectly and its 

type or its parameters need to be revised. 

Newton type or quasi-Newton type optimization techniques 

are applied to find the minimum of (8). 

In numerical experiments the noise of theith detector 

measurements is calculated according to the rule  

 

 
1/2

2

1
( )

M

i i jj
I Iδ ζ

=
 ∆ = ⋅  ∑  . (11) 

 

 Here
2

1

i
i M

jj

ξ
ζ

ξ
=

=
∑

, 
iξ  is a random variable uniformly 

distributed on [-δ, δ]. Such representation of the noise is often 

used to solve ill-posed problem in practice. In a sense these 

error is the worst of possible because it is proportional to the 

sum 
1/2

2

1

M

jj
I

=
 
 ∑  which is greater than each of the value Ii 

errors. 
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III. THE RESULTS OF CALCULATIONS ON RECONSTRUCTION 

PARAMETERS OF THE ITER NEUTRON SOURCE 

In this paper calculations mainly for sources such as 

limacon of Pascal are represented. Some calculations for 

elliptic source are also given for comparison. 

Dependence like  

 

 ( )
0 0

2 2

0 0

( , , , , , )

exp ( ) (( ) / )

R Z R Z

N R R Z Z

ε µ σ

µ σ

=

 − − + − 
 (12) 

 

is considered as an elliptical source. Contour lines of this 

source are a centered family of ellipses with the same ratio of 

semiaxes defined by the parameterσ . It should be noted that 

this representation of source is equal to 
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 
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We present the calculation results for the solution of the 

inverse problem (5), (6) with test data obtained by the 

following formula  

 

 

2
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 Here M = 11 detectors, R0 = 7, Z0 = 0.5, σ = 1.5, µ=1 and 

N=10
16

. 

The basic calculations of the inverse problem (5), (6) have 

been performed for the source which contour lines are given 

by the curves of type limacon: 

 

 

2( ) ( )(cos ( )sin )

( ) ( ) sin , [0, 2 ].

p SH

p

R R a t t

Z Z a k t t

ψ ψ δ ψ

ψ ψ π

= + ∆ + −

= + ∈
 (15) 

  

Here ( ), ( ), ( )SH a a k kψ ψ ψ∆ = ∆ = = are known 

functions which define the shape of each limacon from their 

family shown in Fig. 3. In this case the source function can be 

written as follows: 

 

 

{

{ }

0 0 0

2
2 2 20

0 2

( , , , , ) exp [(

(Z Z )
((Z Z ) ) exp ( ) .

R Z R Z N R R

N a
k

ε µ µ

γ µ ψ

= − − +

− 
+ − + = −



(16) 

 

where                        
2

( )

( ) ( )a k

δ ψ
γ

ψ ψ
= . 

 

Source is determined by the unknown parameters R0, Z0, µ . 

Data 9MA SS at burn-ASTRA and 15MA Inductive at 

burn-ASTRA are used to set the limacon of Pascal. 

The results of the inverse problem solution (5), (6) of 

parameters R0, Z0, µ and N reconstruction (using a solution of 

the external problem (8) with different values of input data 

errors are shown in Figs. 2-4 and Table I. The results of 

calculations are given for the source 15MA SS at burn-

ASTRA. The normalized data Ji with no random perturbations 

(δ=0) added are marked as squares. The results of model 

calculations of analogs of Ji found with optimal parameters 

from the problem (8) are shown as circles. One can see a full 

match of data and their calculated analogs. 

 

 

Fig. 2 Implementation of data corresponding with Table I; δ=1% 

 

 

Fig. 3 Implementation of data corresponding with Table I; δ=5% 
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Fig. 4 Implementation of data corresponding with Table I; δ=10% 

 

Similar curves for the perturbation of input data δ=5% are 

given in the Fig. 3. With the introduction of error input data is 

presented as the solid line. Fig. 4 shows similar curves with 

δ=10%. The results of calculation of the parameters and the 

residual corresponding with Figs. 2-4 are given in Table I 

(lines 4-6). The dependence of results versus initial 

approximation of the minimization in the problem (3) when 

data errors are averaged over 90 realizations is also shown 

there. 

Thus all calculations show the adequacy of obtained 

approximate model parameters to experimental data. All 

parameters except Z0 are reconstructed with acceptable 

accuracy roughly corresponding to the error δ. An exception is 

the parameter Z0 that error of reconstruction is much greater. 

Recommended relative error in the data of the problem is at 

least 5%. The averaging of calculated parameters for the 

ensemble of many implementations of data errors reduces the 

error of these parameters reconstruction. As the number of 

parameters grows reconstruction error increases. 
 

TABLE I 

RECONSTRUCTED PARAMETERS FOR DIFFERENT VALUES OF ERRORS  

 R Z µ Residual N 

Exact solution 6.5 0.5 1.0 - 1016 

Initial approximation 5.5 0.3 0.9 - - 

δ=1% 6.4976 0.4693 1.0106 0.0081 1.0080⋅1016 

δ=5% 6.4338 0.2117 0.9710 0.0423 9.7264⋅1015 

δ=10% 6.4787 0.2839 1.0680 0.0717 1.1051⋅1016 

Average value of the 

parameters with 
δ=5% 

(20 realizations) 

6.4699 0.3545 0.9763 0.0491 1.0203⋅1016 

Average value of the 

parameters with 
δ=10% 

6.4763 0.3128 0.8947 0.0887 1.0307⋅1016 

IV. THE INFLUENCE OF ERROR IN DATA ON ACCURACY OF 

THE PARAMETERS IN THE PROPOSED METHOD OF SOLVING THE 

INVERSE PROBLEM 

The given calculation results depend on the kind of data 

errors. The influence of data errors on accuracy of 

reconstruction of unknown parameters for the calculation of 

Section III is considered in this section. With that purpose for 

the elliptic source and for the source of limacon calculations 

with different values of error δ have been performed to 

determine the parameters with 20 implementations of noise 

(for each δ). The weak dependence of the found parameters on 

δ has been obtained for the elliptic source. Errors in 

determining the parameters R0, µare satisfactory. The 

parameter R0 is restored with a small error for each δ and the 

parameter µ is restored within an accuracy of 10% if δ does 

not exceed 5%. At the same time the parameter Z0 is restored 

with a great relative error. When δ = 1% - 2% all the 

parameters are restored within accuracy of 10%. 

The calculated results of influence of data errors on the 

accuracy of reconstruction of unknown parameters for limacon 

(source 15MA SS) are shown in Figs. 5-8. 

 

 

Fig. 5 The relative error in the determination of R0 

 

 

Fig. 6 The relative error in determining of Z0 
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Fig. 7 The relative error in determining of µ 

 

 

Fig. 8 The relative error in determining of N 

 

It has been found that error of the parameters reconstruction 

are generally less in the case of asymmetric neutron source 

(limacon) than in the case of elliptic source. The results of the 

source parameters reconstruction for limacon (source 15MA) 

and cases where one detector lost are shown in Table II. 

Inverse problem data have an error of 5%. Parameters are 

compared with their exact values and initial approximation 

and the case when all detectors in operation. The calculations 

are averaged over 15 implementations of data errors. 

One can see from the table the loss of a single detector in 

this model configuration has little effect on the results. The 

most critical is the loss of the detector number 7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II 

RECONSTRUCTED PARAMETERS IN CASE OF ONE DETECTOR LOST 

 R0 Z0 µ Residual N 

Exact solution 6.5 0.5 1.0 - ⋅1016 

Initial 

approximation 
6.0 0.4 0.9 - - 

All detectors 6.4864 0.4451 0.9809 0.0409 9.9013⋅1015 

№ 1 lost 6.4835 0.4400 0.9958 0.0396 9.9602⋅1015 

№ 2 lost 6.4898 0.4455 0.9613 0.0407 9.7698⋅1015 

№ 3 lost 6.4917 0.4389 0.9915 0.0399 9.9781⋅1015 

№ 4 lost 6.5001 0.4661 0.9768 0.0392 9.8552⋅1015 

№ 5 lost 6.5011 0.4459 0.9745 0.0377 9.8867⋅1015 

№ 6 lost 6.4981 0.4809 0.9958 0.0398 1.0027⋅1015 

№ 7 lost 6.4954 0.3918 0.9716 0.0391 9.8674⋅1015 

№ 8 lost 6.4973 0.4754 1.0044 0.0414 1.0025⋅1015 

№ 9 lost 6.4921 0.4414 0.9709 0.0398 9.8530⋅1015 

№ 10 lost 6.4964 0.4869 0.9951 0.0385 9.9963⋅1015 

№ 11 lost 6.4906 0.4495 1.0165 0.0400 1.0172⋅1015 

V. CONCLUSION 

1) Calculations have shown the adequacy of the obtained 

approximate model parameters to experimental data. The 

influence of data errors on the error of parameters 

reconstruction is shown: 

• The parameter R0 is reconstructed within accuracy of 4% 

for all considered δ(until 60%); 

• The parameter µ is reconstructed within accuracy of 10% 

if δ does not exceed 5%; 

• The parameter Z0 is recovered with a relative error more 

than 10%; 

• The total intensity of the neutron source is determined 

with an accuracy of 10% if δ does not exceed 15%; 

• All parameters are recovered within an accuracy of 10% 

when δ = 1% - 2%. 

2) The averaging of calculated parameters over the ensemble 

of many implementations of data errors reduces the error 

recovery of these parameters. 

3) As the number of parameters grows reconstruction error 

increases. 

4) Error of the parameters reconstruction is generally less in 

the case of asymmetric neutron source (limacon) than in 

the elliptic source. 

5) The loss of a single detector has little effect on the results 

of the source parameters reconstruction for limacon case. 

The most critical is the loss of the detector number 7. 

ITER needs various neutron diagnostic systems able to 

measure the neutron emissivity within 10% accuracy, with a 

temporal resolution of 1 ms and spatial resolution of a tenth of 

the minor plasma radius, i.e. 200mm. It has been shown in the 

numerical analysis that all parameters (except Z0, µ) are 

reconstructed within required accuracy of 10% if the accuracy 

of measurements in each channel does not exceed 10%. 
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