
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1535

Abstract—In recent years, it has been proposed security

architecture for sensor network.[2][4]. One of these, TinySec by Chris
Kalof, Naveen Sastry, David Wagner had proposed Link layer security
architecture, considering some problems of sensor network. (i.e :
energy, bandwidth, computation capability,etc). The TinySec employs
CBC_mode of encryption and CBC-MAC for authentication based on
SkipJack Block Cipher. Currently, This TinySec is incorporated in the
TinyOS for sensor network security.

This paper introduces TinyHash based on general hash algorithm.
TinyHash is the module in order to replace parts of authentication and
integrity in the TinySec. it implies that apply hash algorithm on
TinySec architecture. For compatibility about TinySec, Components
in TinyHash is constructed as similar structure of TinySec. And
TinyHash implements the HMAC component for authentication and
the Digest component for integrity of messages. Additionally, we
define the some interfaces for service associated with hash algorithm.

Keywords—sensor network security, nesC, TinySec,
TinyOS, Hash, HMAC, integrity

I. INTRODUCTION
HE sensor network is a next-generation network for
moving to a ubiquitous world and many researches are

achieved for realizing it. Nowadays applications using the
sensor network are considered such as collection and
management of environment data, emergency medical system,
military service, trace and management of goods, and it is
expected to expend extremely to various fields around our
world.

The sensor network organizes wireless networks among
sensor nodes, which are restricted in power consumption,
bandwidth, memory, and calculation capability. Generally
these sensor nodes communicate effectively with broadcast
communication in short-range space. The wireless broadcast
communication is exposed to security risks, to put it more
concretely, an adversary can eavesdrop and alter
communication messages, and insert malicious messages. For
preventing these attacks, encryption of the communication data

Manuscript received November 15, 2005
H.R Lee. is with Electronics and Telecommunications Research Institute

(ETRI), 161 Gajeong-Dong Yuseong-Gu, DaeJeon, 305-350, KOREA, Tel :
+82-42-860-1269, / FAX : +82-42-860-5611, e-mail : neogauss@etri.re.kr

Y.J. Choi, H.W. Kim are with Electronics and Telecommunications
Research Institute (ETRI), 161 Gajeong-Dong Yuseong-Gu, DaeJeon,
305-350, KOREA, Tel : +82-42-860-1327, / FAX : +82-42-860-5611, e-mail :
{choiyj,Khw}@etri.re.kr

and mutual authentication between sensor nodes are needed.
However general crypto methods, namely encryption and
authentication using public-key cryptosystems, are not
reasonable, because sensor nodes have very low calculation
capability and small memory and they are not able to operate
such crypto algorithms within sufficient time. Several
researches are suggested to solve such security problems in the
sensor network [2][3][4][5]. Cris, Naveen and David suggested
a Link Layer Security Architecture for wireless sensor network
in paper [2], which can be applicable to sensor nodes with
restricted circumstances. They noticed that end-to-end secure
protocols such as SSL, SSH and IPsec were inefficient for the
sensor network, and implemented the Link Layer Security
Architecture named by TinySec, which is based on SkipJack
symmetric key crypto algorithm and operates it with CBC
mode or CBC-MAC mode to provide confidentiality, integrity,
and authentication. It generates secure packets by encrypting
message data with group key shared among sensor nodes and
calculating MAC for whole message including a header.

In this paper, we implemented security components for
message hash and authentication using SHA-1 hash function
instead of using CBC-MAC based on SkipJack, which is
offered in TinySec. We designed security components by a
similar architecture with TinySec in other to have compatibility
with TinySec, we called TinyHash, and implemented interfaces
for wiring these components. And then we tested execution
time and memory size for SHA-1 hash function implemented
over TinyHash.

This paper is organized as follows. In Section 2, the sensor
network is briefly introduced and in Section 3, TinyOS and
NesC are described in detail. In Section 4, the architecture and
security components of TinyOS are explained. In section 5, we
describe about architecture of TinyHash and show that the test
results of SHA1 algorithm and HMAC implemented under
TinyHash. Finally, concluding remarks and future works are
presented in Section 6.

II. SENSOR NETWORKS
The sensor network implies that is organized the wireless

sensor nodes with extremely limited resource. Generally,
sensor network are consisted of sensor nodes for environment
information sensing and base station for transaction of sensing
information collected. If environment events are happened,
firstly, some sensor nodes in close to environment events
acquire the values of environment event, then these sensor

Implementation of TinyHash based on Hash
Algorithm for Sensor Network

HangRok Lee, YongJe Choi, HoWon Kim

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1536

nodes send the sensing data to base station via multi-hop route,
and then base station process all sensing data received from
sensor nodes. Such sensor networks can be used for various
applications such as medical monitoring, habitat monitoring,
inventory control, emergency response, and battlefield
managements.

In sensor network, neighboring sensor nodes is high possible
to aquire similar sensing information. Therefore, To reduce the
wastes of sensor node’s energy and bandwidth caused by
broadcast mechanism in sensor network, each sensor nodes
make use of in-network progressing mechanism such as
aggregation and elimination of duplicate contents of received
messages. Fig 1) is shown that typical structure of sensor
network.

Fig. 1 Typical Structure of Sensor Network

Sensor node of significant factor in sensor network is

defined to device with the very small memory, Peanet CPU,
and wireless Radio devide. For instance, designed by UC
Berkeley, upgraded version of Mica2 mote, Telos mote is
consisted of an 8MHz 16bit TI MSP430 CPU with 2KB of
RAM, 60KB of EEPROM, and 2.4GHz 802.15.4 Chipcon
wireless Transceiver. We will test hash algorithm and HMAC
scheme with these Telos mote

III. TINYOS AND NESC LANGUAGE
In this section, We describe about the TinyOS and NesC

Language in detail [1]. Because, we are necessary to detail
understand of TinyOS and nesC language in order to explain
relationship between components associated with security
described in session 4 and 5. TinyOS is designed specially for
small embedded systems with limited resources, and it is
programming model developed to meet concept of
event-driven application. The core OS requires only 400 bytes
of code and memory. TinyOS had made to treat of several
programming challenges in sensor network. This TinyOS has
several significant features as follow.

 Component-oriented architecture: TinyOS provides

a set of reusable system components. Application
connents components using a wiring specification that
is independent of component implementations.

 Concurrency based on tasks and events: Tasks are a

deferred computation mechanism. They run to
completion and do not preempt each other. If
components can post tasks then it will deferring the
computation until the scheduler executes the task later.
Events also run to completion, but may preempt the
execution of a task or another event. Events signify
either completion of a split-phase operation or an event
from the environment. TinyOS execution is driven by
events representing hardware interrupts

 Split-phase operations: TinyOS has no blocking
operations All long-latency operations are split-phase
such that operation request and completion are separate
functions. Commands are typically requests to execute
an operation. For example, if the operation is
split-phase, then the command returns immediately and
completion will be signaled with an event.

Programming language for sensor network based on design

concept of TinyOS mentioned above is nesC. NesC Langugae
is based on the concept of components, and directly supports
TinyOS’s event-based concurrency model. NesC applications
are built by wiriting and assembling components. A component
provides and uses interfaces. These interfaces are the only point
of access to the component. An interface generally models
some service and is specified by an interface type. An interface
has bidirectional properties. Namely, they contain commands
and events functions declaration. In Fig 2, The Timer interface
defines start and stop commands and a fired event.

Fig. 2 Some Interface Types

The Command functions in an interface call from one

component requesting service from another component. Event
function calls indication completion of service by a component.
Since, the concept of split-phase operations in TinyOS, the any
components providers implement the command functions
declared in providing interface, while the component users
implement the event functions declared in using interface.

As a simple example, we present Blink application that
performs periodic to blink red LED on mote [9]. Blink
application is organized four components together wired.
Among of them, as be shown in Fig 3), BlinkM module
components implements three commands in interface
StdControl and one event in interface Timer.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1537

Fig. 3 Specification of the BlinkM module component

There is language have two types of components in nesC

which is called modules and configurations. Modeles provide
application code which is implemented one or mode interfaces.
Configurations are used to wire other components together,
connecting interfaces used by components to interfaces
provided by others components. Every nesC application is
described by a top-level configuration that wires together the
components used.

Fig. 4 Specification of Blick configuration component

For example, As shown in Fig 4), Blick configuration is built

by wiring the four subcomponents given by the components
declaration.(Main, BlickM, TimerC, LedsC). It connects the
Timer interface used by BlinkM to Timer interface provided by
TimerC, and connects the Leds interface used by BlinkM to
that provided by LedsC, and finally connects the StdControl
interface used by both BlinkM and TimerC to that provided by
Main component. In Fig5), we graphical depicts of relationship
between sub-components in Blick application.

Fig. 5 graphical depiction of Blink configuration

IV. TINYSEC
In this section, we discuss that link-layer security

architecture in sensor networks and components and interfaces
associated with security in the TinySec[2]. TinySec is a
link-layer security architecture based on SKIPJACK block
cipher. The reason of considering link-layer security
architecture for sensor network security is unlikely to use
conventional the end-to-end security mechanism (i.e SSL, SSH,
IPSec..) in sensor network. These facts are like to follows. The
dominant traffic pattern in sensor networks is broadcast
communication and many sensor nodes communicate sensor
readings or network events through a multihop routing to a
central base station. Also, neighboring nodes in sensor
networks often reads the same or correlated environmental
event values. In here, If each node sends same packets to the
base station, then significant energy and bandwidth are wasted.
So, To prevent these wastes, sensor networks use in-network
processing such as aggregation and duplicate elimination. In
order to archieve in-network processing, sensor nodes should
be able to access, modify the contents of messages received.
Therefore, they choose the link-layer security architecture for
sensor network security, with permitting in-network processing.
Link-layer security architectures ensure that authenticity,
integrity, and confidentiality of messages between neighboring
nodes.

TinySec architecture is shown in Fig6). TinySec supports
two security options which is called TinySec-AE of
authenticated encryption and TinySec-Auth of authentication
only. The TinySec-AE uses the CBC mode for encryption of
data payload and CBCMAC for authentication of entire packet.
TinySec-Auth only use the CBCMAC for authentication of
entire packet. And, TinySec is consist of five module
components and only one configuration components and
defines six interfaces. The key point in the TinySec is the
defined interfaces for security service based on block cipher;

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1538

block cipher mode and MAC. As be described in session 3, the
interfaces are the very necessary factors for modeling of
providing services in TinyOS and nesC. Thus, interfaces of
definitions influences usability, availability and expansion of
whole structure. Therefore, we are attention to define interfaces
associated with hash algorithm. Fig6) is a part of relationship
between components in TinySec.

Fig. 6 Relationship between components in TinySec

V. TINYHASH
In this section, we describes about the TinyHash. As

mentioned above, TinySec uses CBCMAC based on block
cipher for message integrity and authentication, instead of hash
algorithm. Because of, The SkipJack is very light-weight block
cipher algorithm and has high speed performance, then they
may not implements HMAC based on hash algorithm. And also,
most of hash algorithms had been developed algorithms based
on 32bits operation, so it will be able to show that hash
algorithm is not made display of it’s original performance in
CPU based on 8bits, 16bits using on typical sensor mote.

But, it exist many security of advantage due to using hash
algorithms, since we will forecast to be developed light-weight
hash algorithm enabling to apply in sensor node with extremely
resource constraints. Therefore, we design TinyHash
architecture based on hash algorithm for preparation of using in
the future.

TinyHash provides integrity and authentication of message.
TinyHash is applied HMAC scheme for authentication and
make use of the SHA1 hash algorithm for message digest. Here,
SHA1 algorithm is able to replace other hash algorithms.(i.e
MD5, RIPEMD, SHA256 etc). To enable a high level
application running on TinyOS to use the variety types of hash
algorithm, we have implements Digest component to represent

the hash algorithm. Because, TinyHash is independent module
from the hash algorithm, not only it can easily include any hash
algorithms in TinyHash architecture, but also TinyHash User
can conveniently use to choose any hash algorithms. For
instance, if developer will implement signature algorithm based
on public key running on TinyOS, in this case, instead of
directly using of specific hash algorithm in signature algorithm
component, developer have only to use the Digest component,
and only have to modify the wiring code in signature
configuration component. Hence, without modifying source
code in implemented application module component,
applications are able to use freely some hash algorithms, only
modifying of wiring in the application configuration
component. The following statements are definitions of three
interfaces associated with hash algorithm.

 MessageDigest : Defines commonly four command

functions of hash algorithm.
 init(), update(), updateByte(), dofinal()

 MessageDigestInfo : Defines command function of
hash size.

 getMessageDigestSize()
 HASH : Defines command functions of message digest

service.
 Init(), initIncrementalHash(), incrementalHash(),

getIncrementalHash(), hash()

Since interface of HMAC service correspond to interface of

MAC service in defining of TinySec, we do not defines
interface of HMAC and make use of MAC interface. As be
shown in Fig 7), since HMAC component provides MAC
interface, it should implements all commands declared in MAC
interface, and then HMAC component uses both
MessageDigest and MessageDigestInfo interfaces, it should
implements all events declared in that interfaces. But, defined
MessageDigest and MessageDigestInfo interfaces in above,
any events functions are not defined in that interfaces, therefore
HMAC component simply should implements code to call the
want to using commands in that interfaces. In Fig 8), it is shown
that relationship between components in TinyHash.

We have implemented TinyHash on Telos mote, and we
have implements SHA1 to 8bits version in order to have the
compatibility with MICA mote series. Our Implementation of
SHA1 algorithm requires 125 bytes of RAM and 4075 byte of
ROM. And SHA1 performance is estimated 35ms for 160 bit
message data. Also, HMAC has twice size more than SHA1
algorithm. As mentioned above, since SHA1 algorithm is
designed algorithm based on 32bits, we thinks that SHA1
algorithm is not made a display of original performance on
currently motes. In Table 1), we show that performance and
size of TinyHash.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1539

TABLE I
 EXECUTION TIME AND SIZE ON TELOS MOTE

Implemented
Algorithms Time(ms) Size of RAM , ROM (byte)

SHA1 35 140 , 3504

HMAC 71 165 , 4017

Table 1) Execution Time and Size on Telos mote

Fig. 8 Relationship between components in TinyHash

VI. CONCLUSION
In this paper, we have proposed TinyHash based on general

hash algorithm providing message integrity and authentication.
We have designed TinyHash to a similar architecture with
TinySec in other to compatibility. And we have defined some
interfaces of Message Digest services, and then we have
implemented HMAC component for authentication and Digest
component for integrity of message. Since TinyHash
architecture is independently designed with hash algorithm, it
can conveniently add and use any hash algorithms. But, as
shown testing result of SHA1 in above, since previously all
hash algorithms are developed algorithms based on 32 bits
operation, then hash algorithms are not made a display of own
natural performance in currently sensor mote. Therefore, we
think that need to development of light weight hash algorithm
for sensor node.

REFERENCES
[1] David Gay, Philip Levis, Robert von Behren “The nesC Language : A

Holistic Approach to Networked Embedded Systems” PLDI’03 June
9-11

[2] Chris Karlof, Naveen Sastry, David Wagner ”TinySec : A Link Layer
Security Architecture for Wireless sensor Networks” SenSys’04
November

[3] David J. Malan, Matt Welsh, Michael D. Smith “A Public-Key
Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve
Cryptography”

[4] Tieyan Li, Hongjun Wu, Xinkia Wang and Feng bao “SenSec Design”
I2R Sensor Network Flagship Project : Technical Report-TR v1.0

[5] Ronald Watro, Derrick Kong,Sue-fen Cuti, Charles Gardiner, Charles
Lynn, Peter Kruus “ TinyPK : Securing Sensor Networks with Public Key
Technology”

[6] Mihir Bellare, A. Desai, E. Jojipii, P. Rogaway. “The security of the
cipher block chaining message authentication code” journal of Computer
and System Sciences 61(3):362-399, December 2000

[7] FIPS PUBS 180-2 “ SECURE HASH STANDARD” U.S DoC/NIST,
Augest 1,2002

[8] FIPS PUBS #HMAC draft “The Keyed-Hash Message Authentication
Code”

[9] “TinyOS and nesC Tutorial” http://www.tinyos.net/tinyos-1.x/doc/
[10] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong. “TAG : A tiny aggregation service for ad-hoc sensor networks.” In
The Fifth Symposium on Operatiing Systems Design and
Implementation(OSDI 2002), 2002

