
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

387


Abstract—Interoperability in distributed systems is an important

feature that refers to the communication of two applications written
in different programming languages. This paper presents a serializer
and a de-serializer of PHP objects to and from XML, which is an
independent library written in the PHP programming language. The
XML generated by this serializer is independent of the programming
language, and can be used by other existing Web Objects in XML
(WOX) serializers and de-serializers, which allow interoperability
with other object-oriented programming languages.

Keywords—Interoperability, PHP object serialization, PHP to
XML, web objects in XML, WOX.

I. INTRODUCTION

HE growth in the use of information and communication
technologies has originated the development of

applications written in different programming languages,
which at the same time has generated interoperability
problems when interchanging information among them. One
way to solve interoperability among object-oriented
programming languages is through serialization of objects,
where the issues are related to data type mapping,
representation of objects, messages, and serialization and de-
serialization processes, as it is stated in [1].

Concerning data type mapping, "data types are one of the
main issues when it comes to interoperability between
different programming languages. There must be an agreed
mapping between the data types of the programming
languages involved. One way to solve this problem is a
mapping table with the different data types supported by the
different programming languages" [1].

In order to tackle the problem of object representation,
"there must be a standard way of representing objects, either
the object is written in Java, C#, PHP, or other object-oriented
programming language. A standard format must be established
to represent the supported structures in the different
programming languages: classes, primitive data types, arrays,
and user-defined classes" [1].

The issue about messages is that "they represent the way
clients and servers communicate. Messages are used to make
requests or receive responses, and they must also be written in
a standard way to be understood by clients and servers" [1].

Finally, regarding serialization and de-serialization, "in the

Lidia N. Hernández-Piña is with the Department of Information

Technology at the Metropolitan Autonomous University, Mexico City,
Mexico (e-mail: 210368177@alumnos.cua.uam.mx)..

Carlos R. Jaimez-González is with the Department of Information
Technology at the Metropolitan Autonomous University, Mexico City,
Mexico (corresponding author, e-mail: cjaimez@correo.cua.uam.mx).

context of data storage and transmission, serialization is the
process of rendering an object into a state that can be saved
persistently into a storage medium, such as a file, database, or
a stream to be transmitted through the network. De-
serialization is the opposite process, which puts the serialized
version of the object into a live object in memory" [1].

This paper presents a serializer and a de-serializer of PHP
objects to XML, called PHP Web Objects in XML
(PHPWOX) [2]. The XML generated by PHPWOX is
independent of the programming language, and can be used by
other existing serializers and de-serializers WOX [3], which
allow interoperability between applications written in PHP and
applications written in the programming languages supported
by WOX: Java, C# [1] and Python [4].

The rest of the paper is organized as follows. Section II
presents concepts and some existing PHP parsers and
serializers. Section III provides an explanation of the classes
that are part of PHPWOX; it also presents its architecture and
a description of the functionality of the modules that compose
it. Finally, conclusions and future work are provided in
Section IV.

II. CONCEPTS AND EXISTING PHP SERIALIZERS

This section provides some concepts used for understanding
the functionality of the object serializers to XML, such as
serialization and de-serialization. It also describes some
existing PHP parsers and serializers, and a comparison among
them is provided.

A. Concepts

Serialization is the process of rendering an object to a state
that can be stored permanently to a medium, such as a file,
with the aim of transmitting it through the network as a series
of bytes, or in other format, such as XML or JSON. The
serialization of objects to XML provides a representation that
is understandable by a human and by a computer; this format
also promotes interoperability among different programming
languages. The series of bytes or the format chosen to serialize
can be used to reconstruct the object, which will be identical
to the original.

The program able to serialize an object directly to a file in
an automatic way is called a serializer; while a parser is just a
program that reads and writes XML to a file, in which the
serialization is done manually by the user.

Fig. 1 shows the process to serialize an object to XML,
which starts by obtaining the name, type and value of each
attribute of the object, through the use of reflection. Reflection
is the ability of a program of observing and optionally

Lidia N. Hernández-Piña, Carlos R. Jaimez-González

Implementation of a Serializer to Represent PHP
Objects in the Extensible Markup Language

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

388

modifying the high level structure of an object; this ability
allows accessing the information of objects, knowing their
attributes and public methods in execution time. Introspection
is also used in order to obtain the data type of a specific
attribute. The second step in the process is to write an XML
file with a tree structure that represents the object in XML,
taking into consideration for each object all its attributes; and

in case of having nested objects, doing it recursively.
The process of de-serializing an object from XML is

illustrated in Fig. 2. It first extracts from the XML file the
object information; then an object is created with that
information, which is obtained from the XML file. In case the
object does not exist, it is created first with all the attributes
needed.

Fig. 1 Process of serializing an object to XML

Fig. 2 Process of de-serializing an object from XML

B. Existing Parsers and Serializers

Some of the existing PHP parsers and serializers were
analyzed and compared. The parsers taken into consideration
were DOM and SimpleXML; the non-XML serializers
analyzed were the serialize() function of PHP, the
json_encode function of PHP, and Igbinary; and the only
XML serializer analyzed was Pear. Although there are several
existing parsers and serializers of PHP objects, incorporated as
PHP functions or as external complements, none of them
allow interoperability with other programming languages. In
the following paragraphs, a brief description of each parser or
serializer is provided.

Document Object Model (DOM) [5]. DOM is an application
programming interface (API) that provides a standard set of
objects to represent HTML and XML documents; it is a model
to describe how to combine such objects; and it is a standard
interface to access and manipulate them. Programs can access
and modify content, structure, and style of HTML and XML
documents through DOM [1]. PHP has a DOM extension,
included when downloading and installing PHP with XAMPP
[6], which allows creating and manipulating XML documents.
It should be noted that with DOM, the programmer must
specify how every object should be serialized, which means
that there is no way to automatically serialize any objects of
any class; this process is carried out manually by the
programmer.

SimpleXML [7]. It is a PHP extension included when
downloading and installing PHP with XAMPP, which allows
manipulating XML files. SimpleXML allows to process XML

files with property selectors and matrix iterators. Compared to
DOM, SimpleXML takes less code to be written in order to
read an element. The programmer must specify how every
object should be serialized with SimpleXML, which means
that there is no way to automatically serialize any objects of
any class; this process is also carried out manually by the
programmer.

Serialize() function [8]. This function of PHP returns a
string that contains a stream of bytes that represent any value
that can be stored in PHP; this means that the serialization is
not an XML representation. The unserialize() function can
restore the original values from the string mentioned. Using
the serialize() function to store an object, it will store all
variables of the object, which represents its state. For this type
of serialization, it is needed the class from which the object
was created.

Json_encode() function [9]. This function returns a value
serialized in a string. PHP implements a superset of JSON,
and also codes and decodes scalar values and NULL values.
JSON standard only accepts these values when they are nested
in an array or in an object. The json_encode() function can
serialize objects directly only if its attributes are public; if they
are private, there is no standard way to serialize it.

IgBinary [10]. This serializer replaces the standard PHP
serializer. It does not use a text representation, but a binary
representation instead. A clear advantage of this serializer is
its little use of memory, but on the other hand, the object
representation is not visible to the user.

Pear XML_Serialize [11]. Pear is a framework for reusable

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

389

PHP components. XML_Serialize is part of this framework
and allows to serialize complex data to XML, such as arrays
and objects. Pear allows a direct (automatic) serialization,
which means that the user does not need to specify how the
serialization takes place.

C. Comparison of Existing Parsers and Serializers

Table I shows a comparison of features among the parsers
and serializers mentioned in the previous sections: P1) DOM,
P2) SimpleXML, P3) Serialize(), P4) Json_encode(), P5)
IgBinary, P6) XML_Serializer; the tick indicates that the
parser or serializer has the feature, and the cross indicates that
the parser or serializer does not have it. A brief description of
the features considered, which were used to evaluate the
existing parsers and serializers, is presented in the following
paragraphs.

Interoperability. It is the possibility of serializing an object
in a programming language, and de-serializing it in a different
programming language, and vice versa. For example,
serializing an object in the C# programming language, and de-
serializing it in the Python programming language.

Convert objects-XML. This feature refers to the possibility
of serializing an object automatically to an XML file, through
a method of a class.

Convert XML-objects. This feature refers to the possibility
of obtaining one or more objects automatically from an XML
file, through a method of a class.

Free license. The parser or serializer is distributed freely, it
is available for use and for unlimited time.

Well formed XML. This feature means to have a document
in which its tags are correctly nested, and also the
corresponding initial and end tags.

Documentation. This feature means that the parser or
serializer has documentation and a user guide for its use.

Examples of use. This feature means that the parser or
serializer has examples of use in the documentation or in any
other source of information.

TABLE I

FEATURES TO EVALUATE THE PARSERS AND SERIALIZERS ANALYZED

Feature P1 P2 P3 P4 P5 P6

Interoperability      
Convert objects-XML      
Convert XML-objects      
Free license      
Well formed XML      

Documentation      
Examples of use      

III. IMPLEMENTATION OF THE XML SERIALIZER

This section provides an explanation of the classes that are
part of the serializer and de-serializer; it also presents its
architecture and a description of the functionality of the
modules that compose it.

A. Classes Implemented

Fig. 3 shows a diagram with the classes that are part of the
XML serializer and de-serializer, which are the following:

Easy class, SimpleWriter class, SimpleReader class, Encode
class, Serial interface, CreateClass class, TypeMapping class.

Easy. This is an external class, used by final users in order
to serialize and de-serialize objects to and from XML. It has
two methods: save(ob:object, filename:file), which serializes
an object to XML and saves it to an XML file, the first
parameter is the object to be serialized, and the second
parameter is the file to store the XML generated; and the
load(filename:file):Object, which de-serializes an object from
the XML file that is specified in the input parameter.

SimpleWriter. This class takes a PHP object and represents
it as XML by using the XML DOM parser. It uses a write()
method that receives a PHP object, analyzes it to determine its
data type, extracts its fields and values, and serializes it.

SimpleReader. This class represents the de-serializer; it
reads an object from an XML file to represent it as a PHP
object. It uses the read() method to take as starting point a
DOM element from the XML file, determines its data type,
and extracts its information in order to create the specific
object required. It should be noted that if the class of the
object does not exist, it uses the createClass class to create it.

Encode. This class allows to encode and decode the base64
matrixes of bytes; it has several methods to take care of the
encode and decode operations, two of them are: encode(byte[]
source), and decode(byte[] source).

TypeMapping. This class provides the data type mappings
from the PHP programming language to WOX, and vice versa.

Serial. This is an interface that defines the constants used in
the XML representation of PHP objects.

CreateClass. This is a class that generates classes; it allows
to create a PHP document with a class, taking as input its
name and attributes. The generated class will have a
constructor, setters and getters.

Fig. 3 Classes implemented for the serializer and de-serializer

B. Architecture and Modules

The main modules of PHPWOX are the following: 1)
serializer module, which serializes PHP objects to XML
(SimpleWriter class); 2) de-serializer module, which de-
serializes PHP objects from XML (SimpleReader class); and
3) generator classes module, which creates PHP classes from
XML (CreateClass class). Fig. 4 shows a diagram with the
functionality of the modules. There are some notes indicated
as A1, A2, A3, A4 and A5, which are explained in the
following paragraphs.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

390

A1. In this section it is observed the ProductJava object of the
Product class, which is written in the Java programming
language, with its attributes and values. This object is
serialized through the Java WOX serializer [1], which
gives the ProductJava.xml file shown to the right.

A2. The ProductJava.xml file is de-serialized with the PHP
WOX de-serializer [2], which does not have the Product
class, so it creates the Product.php class, and creates an
instance of this class with the values indicated in the
JavaProduct.xml file, giving as result the ProductPhp

object in the PHP programming language, which is
identical to the ProductJava object, but in PHP.

A3. The ProductPhp object gets new values in its attributes.
A4. The ProductPhp object is serialized by PHP WOX

Serializer [2], obtaining the ProductPhp.xml file.
A5. The ProductPhp.xml file is de-serialized by the Java

WOX de-serializer [1], obtaining as result the object
modified in PHP. In Java, this object is called
ProductJavaMod, which is shown in Fig.4.

Fig. 4 Diagram with the modules for the serializer and de-serializer

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a serializer and de-serializer of PHP
objects to and from XML, called PHPWOX. The XML
generated by PHPWOX is independent of the programming
language, and can be used by other existing WOX serializers

and de-serializers, which allow interoperability with the
object-oriented programming languages Java, C#, and Python.
The development of PHPWOX was described, the set of
classes implemented, and the architecture and modules were
also presented, with a clear example of the functionality of the
modules, and showing what PHPWOX is capable of doing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

391

regarding interoperability.
Further work is needed to implement a framework on top of

PHPWOX, to handle distributed objects, in order to
communicate with other WOX frameworks already
implemented.

REFERENCES
[1] C. Jaimez-González, S. M. Lucas, "Easy Serialization of C# and Java

Objects", Proceedings of the Balisage: The Markup Conference 2011,
ISSN: 1947-2609, Montreál, Canada, 2-5 August 2011,
http://www.balisage.net/Proceedings/vol7/html/Jaimez01/BalisageVol7-
Jaimez01.html, last access in August 2017.

[2] PHPWOX web site, http://phpwoxserializer.sourceforge.net/, last access
in August 2017.

[3] WOX web site, http://woxserializer.sourceforge.net/, last access in
August 2017.

[4] A. Rodríguez-Martínez, C. Jaimez-González, "Serializador de Objetos a
XML en el Lenguaje de Programación Python", Avances de Ingeniería
Electrónica 2013, Universidad Autónoma Metropolitana, Universidad
Autónoma de Nayarit, México, 2013.

[5] DOM reference web site, https://www.w3.org/DOM/, last access in
August 2017.

[6] XAMPP web site, http://www.apachefriends.org/es/download.html, last
access in August 2017.

[7] SimpleXML documentation web site,
http://www.php.net/manual/en/book.simplexml.php, last access in
August 2017.

[8] Serialize function documentation web site,
http://php.net/manual/es/language.oop5.serialization.php, last access in
August 2017.

[9] json_encode function documentation web site,
http://us2.php.net/manual/es/function.json-encode.php, last access in
August 2017.

[10] Igbinary serializer web site, http://pecl.php.net/package/igbinary, last
access in August 2017.

[11] Pear XML Serializer web site, http://pear.php.net/, last access in August
2017.

