
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3025

Abstract— Polynomial bases and normal bases are both used for

elliptic curve cryptosystems, but field arithmetic operations such as
multiplication, inversion and doubling for each basis are implemented
by different methods. In general, it is said that normal bases, especially
optimal normal bases (ONB) which are special cases on normal bases,
are efficient for the implementation in hardware in comparison with
polynomial bases. However there seems to be more examined by
implementing and analyzing these systems under similar condition. In
this paper, we designed field arithmetic operators for each basis over
GF(2233), which field has a polynomial basis recommended by SEC2
and a type-II ONB both, and analyzed these implementation results.
And, in addition, we predicted the efficiency of two elliptic curve
cryptosystems using these field arithmetic operators.

Keywords— Elliptic Curve Cryptosystem, Crypto Algorithm,
Polynomial Basis, Optimal Normal Basis, Security.

I. INTRODUCTION
LLIPTIC Curve Cryptosystems (ECCs) were proposed in
1985 by Neal Koblitz[3] and Victor Miller[4]. The security

of ECC is based on the discrete logarithm problem over the
points on an elliptic curve. The discrete logarithms problem of
ECC is known as more difficult problem than the prime number
factorization problem of RSA algorithm. The security problems
of cryptosystems, such as the discrete logarithms and prime
factorization, are closely related to the key length of
cryptosystems. If the security problem is more difficult then
smaller key length can be used with sufficient security. In fact,
it is known that the elliptic curve cryptosystem over GF(2233)
provides same security as of 2,048-bit RSA cryptosystem[1].
This smaller key length makes ECCs suitable for practical
applications such as embedded systems and wireless
applications.

ECCs in general are implemented over prime fields or binary
fields. Arithmetic operations used in prime fields are similar to
arithmetic operations used in RSA cryptosystems. For binary
fields they are different according to bases used. Two of the
most common bases used in binary fields are the polynomial
basis and the normal basis. Any bases in both can be used for
ECCs, however, some special cases such as trinomial bases,
pentanomial bases and optimal normal bases (ONBs) are, in
practice, used for the purpose of efficient operations. The

Manuscript received November 15, 2005
Y.J. Choi, M.S. Kim, H.R Lee and H.W. Kim are with Electronics and

Telecommunications Research Institute (ETRI), 161 Gajeong-Dong
Yuseong-Gu, DaeJeon, 305-350, KOREA, Tel : +82-42-860-1327, / FAX :
+82-42-860-5611, e-mail : {choiyj,gomskim,neogauss,khw}@etri.re.kr

ONBs especially are known to be more efficient for hardware
implementation than polynomial bases because the
multiplication operation can be performed very efficiently and
inversion can be achieved by repeated multiplication typically
using the method of Itoh and Tsujii and doubling can be
executed by only one cyclic shift operation. However these
facts seem to be more examined by implementing analyzing
these systems under similar condition.

For this purpose, we designed field arithmetic operators for
each basis over GF(2233), which field has a polynomial basis
recommended by SEC2[3] and a type-II ONB both, and
analyzed these implementation results. And, in addition, we
also predicted the efficiency of two elliptic curve
cryptosystems using these field arithmetic operators.

II. IMPLEMENTATION OF FINITE FIELD ARITHMETIC
OPERATIONS

As we said upper, we will deal with two bases which are
polynomial basis and normal basis. Polynomial basis
representation over GF(2m) is as follow.

)2(},,,,,{ 132 mm GF∈⋅⋅⋅ − ααααα (1)

And, normal basis representation over GF(2m) is as follow.

)2(},,,,,{
12 222 mGF

m

∈⋅⋅⋅
−

βββββ (2)

The addition over GF(2m) is simply logical XOR operation

of the corresponding coefficients regardless of basis.
Arithmetic operations for elliptic curve cryptosystems such as
multiplication, squaring and division except addition are
achieved by different methods according to bases used. In this
chapter, we will describe operation methods in each basis and
its implementation.

A. Multiplication
Multiplication in polynomial basis is achieved to two steps.

The first step is to multiply two binary polynomials together.
Then it yields a product polynomial degree up to 2m-2. Next,
this result should be reduced modulo the irreducible
polynomial degree of m.

As multiplication methods in polynomial basis, there are
bit-serial methods [5, 8] and bit-parallel methods [6, 7, 9]. The
bit-serial methods can be implemented with a small size of
hardware, but it must repeat operations more than m times and

Implementation and Analysis of Elliptic Curve
Cryptosystems over Polynomial basis and ONB

Yong-Je Choi, Moo-Seop Kim, Hang-Rok Lee and Ho-Won Kim

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3026

these iterations reduce the system performance. On the other
hand, the bit-parallel method may expect a high performance,
but according to enlargement of the degree m, its hardware area
increases asymptotically with m2. For example, a 233-bit
parallel multiplier of Sunar and Koc[6] requires 54,288 XOR
gates and 54,289 AND gates, and it is too large to implement on
a general commercial FPGA.

For this reason, we proposed a hybrid multiplier for GF(2m)
defined by an irreducible trinomial xm + xn + 1 (n≤m/2) in
[11], which can be constructed in variable structures depending
on the performance-area trade-off. The structure of it is shown
in a following picture 1. The proposed hybrid multiplier
requires km AND gates, km+2k-1 XOR gates and TX + ⎡m/k⎤
(max{TA, TX}+ ⎡log2(k+1)⎤ TX) delays, where TA is an AND
gate delay and TX is a XOR gate delay.

Fig. 1 Structure of the hybrid polynomial multiplier

Multiplication in a general normal basis can be achieved by

Massey-Omura multiplication method[13]. For ONB, which
has special cases so called Type I and Type II and performs
efficiently multiplication, it is implemented some different
way. Multiplication for Type I ONB is achieved by Modified
Massey-Omura multiplication method. For Type II ONB,
GF(2233) of this paper is applicable to this case, Sunar and Koc
[12] proposed a parallel multiplier optimized for area.
Sunar-Koc’s multiplication method is executed as follows. It
firstly changes the bases of two multiplication elements to
canonical bases for efficient calculation. And then it multiplies
two elements changed in canonical basis. After multiplication,
the result is converted back to the normal basis. Because basis
conversion is implemented by only logic wiring, it needs no
additional logics.

A hybrid multiplier for Type II ONB was proposed by
Wu-Hasan in [9]. After basis conversion as like [12], they
extend degree of the multiplier b(x) to 2m-1 and save it at the
register. The multiplier b(x) saved and the multiplicand a(x) is
performed bit-wise operations as like following picture 2. The
operation logic of the picture outputs one bit among

multiplication results and this operation logic can be used in
parallel as many as need for whole multiplication operation
depending on the performance-area trade-off.

Fig. 2 Bit operation block of the Wu-Hasan multiplier

The following picture 3 is the structure of the hybrid

multiplier for Type II ONB. This is implemented with registers
to save inputs and results, (2m-1)k XOR gates, and km AND
gates, and its operation time is ⎡m/k⎤(TA+(1+⎡log2m⎤)TX).

Fig. 3 structure of the hybrid multiplier for Type II ONB

B. Squaring
Squaring in polynomial basis can be performed using a

multiplication block by inputting the same value at two inputs.
Squaring, however, is used frequently in elliptic curve
operations, therefore it using the multiplication block slows
down the crypto systems. It in polynomial basis is achieved by
bit extension and reduction. Bit extension is performed by
inserting a ‘0’ bit between consecutive bits of the binary
representation of the input value. If an irreducible polynomial is
not changed, then these procedures can be precomputed. In
GF(2233) with irreducible polynomial x233 + x74 +1, squaring is
executed with 153 XOR gates and its operation time is TX. That
is to say, squaring in polynomial basis is implemented in very

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3027

small area with high performance.
As we said before, squaring in ONB can be achieved by only

a cyclic shift operation. In hardware implementation, a cyclic
shift operation is implemented by logic wiring with no
additional logics.

C. Inversion
As inversion algorithms for polynomial bases, Extended

Euclidean algorithm (EEA) and Almost Inverse Algorithm
(AIA) are commonly used [6]. In software implementation, the
running time of EEA is similar to AIA. AIA, however, is more
desirable for hardware implementation because operations are
calculated bit by bit and post-operations are predicted
efficiently, although AIA needs separate operation multiplying
x-k. In MAIA (Modified AIA), this inverse reduction step is
modified to perform directly. We enhanced the MAIA in point
of parallel operation and prediction of post-operations at [10].
The following picture 4 is the structure of the inversion
operator. Its operation time is about 250 cycles, which may be
changed by input value.

Fig. 4 structure of the inversion operator

Inversion in normal bases is achieved by Itoh and Tsujii

algorithm. IT algorithm iterates multiplication and squaring.
However squaring is only a shift operation; therefore it uses
only multiplication logics in hardware implementation. It was
enhanced to reduce the number of iterations by Chang and
Takigi but it is applicable for some special cases. So in this
paper we used IT algorithm for inversion. Picture 5 is the
structure of the inversion operator. As you can see the picture,
ONB inversion hardware is easily implemented by adding
some multiplexers and registers to the multiplication logic. This
ONB operator can achieve both multiplication and inversion
according to a mode value. In GF(2233), inversion needs 10
iterations of multiplication.

Fig. 5 structure of the inversion operator for ONB

III. ANALYSIS OF IMPLEMENTATION RESULTS AND
PERFORMANCE PREDICTION OF ECC SYSTEMS

In this chapter, we will analyze the arithmetic operators
implemented above and predict the performance of elliptic
curve cryptosystems according to basis. Arithmetic operators in
GF(2233) is synthesized and verified at a xilinx virtex-2 8000
FPGA which is going to be used for our ECC system.

A. Analysis of implementation results
In implementing hardware not only logic delay but also

routing delay affects performance. The routing delay is
important especially at high-performance public key
cryptosystems, which need operators to calculate over a
hundred bit at the same time. In elliptic curve cryptosystems the
multiplication logic dominates the hardware area. Table 1
shows the synthesis results of our hybrid polynomial multiplier.
(The result may be changed minutely according to synthesis
environment.) We examined the multiplier changing the
operation bit from 59 to 233. When the operation bit is 59, it
needs 4 operation clocks. As you can see in the table, according
as the hardware area increases, the routing delay dominates the
hardware performance.

TABLE I
SYNTHESIS RESULTS OF OUR HYBRID POLYNOMIAL MULTIPLIER

Synthesis Result Operation Bit
(operation

cycle)
Delay
(ns)

Area
(slices)

Theoretical Delay

233
(1 clock) 24 28,000 Max{TA, TX} +

9TX
117

(2 clocks) 20 13,300 Max{TA, TX} +
8TX

59
(4 clocks) 18 5,100 Max{TA, TX} +

6TX

Synthesizing our polynomial inversion hardware at FPGA,

its hardware area is 2,124 slices and its operation time is below
19ns, so it can be operated over 50MHz. Squaring hardware is
synthesized in 108 slices, and addition hardware is 84 slices.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3028

As for ONB, addition logic is 108 slices like polynomial and
arithmetic operator, which can perform both multiplication and
inversion, is synthesized in 18,800 slices. At this time its
operation bit is 117-bit. Only 117-bit ONB multiplier is
implemented in 17,600 slices, therefore about 1,100 slices is
added for inverse operation. The maximum delay is 21ns and
its operation cycle is 2 clocks for multiplication and 30 clocks
for inversion.

In comparison with a polynomial multiplier and an ONB
multiplier, we can see that the former is a little superior to the
later in the point of view of area and performance. This fact can
be verified by observing the area and delay needed
theoretically. Table 2 shows these comparisons.

TABLE 2 COMPARISON WITH A POLYNOMIAL MULTIPLIER AND AN
ONB MULTIPLIER

117 Bit 59 Bit
Poly ONB Poly ONB

XOR Gate 27,494 54,405 13,629 27,435
AND Gate 27,261 27,261 13,514 13,514
Operation

Time
2max{TA,

TX }+ 15TX
2TA +
18TX

4max{TA,
TX }+ 25TX

4TA +
36TX

B. Performance prediction of elliptic curve cryptosystems
Not only field arithmetic operators but also coordinates for

elliptic curve operations and scalar multiplication methods
dominate cryptosystem’s performance. Two of the most
common coordinates used in ECC are the affine coordinate and
the projective coordinate. Scalar multiplication is the operation
to compute kP, where k is a random integer and P is an elliptic
curve point, and it can be defined the combination of additions
of two points on an elliptic curve.

The most basic implementation method of ECC is to use an
affine coordinate and a binary scalar multiplication method.
The addition of two points on an elliptic curve over an affine
coordinate is defined as following algorithm 1. (The elliptic
curve over GF(2m) given by the equation y2 + xy = x3 +ax2 + b
and P1 and P2 are the points on the elliptic curve). This elliptic
curve addition needs two field multiplications and one
inversion.

Algorithms 1. Point Addition Equation in affine coord.

Input : P1 = (x1 , y1) , P2 = (x2 , y2).
Output : P3 = P1 + P2 = (x3, y3).
1. If P1 = P2 (doubling)

x3 = λ2 + λ + a, y3 = x1
2 + (λ + 1) x3

where (λ = x1 + y1 / x1)
2. Else if P1 ≠ P2 (point addition)

x3 = λ2 + λ + x1 + x2 + a,
y3 = λ(x1 + x3) + x3 + y1
where (λ = (y2 + y1) / (x2 + x1))

3. Return (x3 , y3)

The binary scalar multiplication method is shown in

algorithm 2.

Algorithm 2. Binary method for scalar multiplication
Input : k = (kt-1, … , k2, k1, k0)2, P ∈ GF(2m).
Output : kP.
1. Q O.
2. For i from t −1 downto 0 do

2.1 Q 2Q.
2.2 If ki = 1 then Q Q + P.

3. Return (Q)

In the case of implementing an elliptic curve system using
117-bit hybrid multipliers and binary scalar multiplication
method, its hardware area and operation time are as following
table 3.

TABLE 3 COMPARISON OF ECC SYSTEMS USING AFFINE
COORDINATE

Area (slices)
`

MUL INV ETC
(App.)

Total
(App.)

Operati
on Time
(App.)

Polynomial
Basis 13,300 2,214 1,500 17,000 88,500

clocks
Optimal
Normal
Basis

18,800 1,200 20,000 11,500
clocks

Comparing the hardware areas, the elliptic curve

cryptosystems for polynomial basis is implemented by small
area than that of ONB. However considering the performance,
ONB is far superior to polynomial system above table. It is
caused because of difference of inversion performance of the
two bases.

For high-performance system, projective coordinate and
scalar multiplication methods using pre-computation are used.
In projective coordinate, multiplication operation numbers are
increased but inversion is achieved only one time. Because
multiplication is very faster than inversion in hardware and
multiplications can be achieved in parallel, the ECC system
over projective coordinate is suited for the high performance
cryptosystem. The addition of two points on an elliptic curve
over a projective coordinate is defined as following algorithm
3. The results calculated in projective coordinate should be
converted back to the affine coordinate. This operation is done
by x/z, y/z2. At this time, inversion is used only one.

Algorithms 3. Point Addition Equation in projective coordinate.
Input : P0 = (x0 , y0, z0) , P1 = (x1, y1, 1).
Output : P2 = P0 + P1 = (x2, y2, z2).
1. If P0 = P1 (doubling)

Z2 = Z0
2 * X0

2,
X2 = X0

4 + b * Z0
4,

Y2 = b * Z0
4 * Z2 + X2 * (a * Z2 + Y0

2 + b * Z0
4).

2. Else if P0 ≠ P1 (point addition)
A = Y1 * Z0

2, + Y0 , B = X1 * Z0 + X0 ,
C = Z0 * B , D = B2 * (C + a * Z0

2) ,
Z2 = C2 , E = A * C ,
X2 = A2 + D + E , F = X2 + X1 * Z2 ,
G = X2 + Y1 * Z2 , Y2 = E * F + Z2 * G ,

3. Return (x3, y3, z3)

Using two multipliers in parallel, the operation flow for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3029

elliptic curve addition over projective coordinate is shown in
picture 6. This flow is applicable equally for both polynomial
basis and ONB. If we use binary scalar multiplication method
with two multipliers, then expectation results of hardware
performance and area will be as following table 4. As you can
see, we will expect that the difference of the ECC systems of
two bases is slight if both performance and area are considered.
Performance difference may be from the difference of only one
inversion operation of each basis.

Fig. 6 Operation flow for elliptic curve addition over projective

coordinate

TABLE 4 COMPARISON OF ECC SYSTEMS USING PROJECTIVE
COORDINATE

Area (slices)

MUL INV ETC
(App.)

Total
(App.)

Operation
Time

(App.)

Polynomial
Basis 26,600 2,214 5,000 34,000 3,420

clocks
Optimal
Normal
Basis

18,800 +
17,700 3,000 39,500 3,200

clocks

IV. CONCLUDING REMARKS
In this paper, we designed field arithmetic operators for

polynomial basis and ONB over GF(2233) and analyzed these
implementation results. On the basis of results we predicted the
efficiency of two elliptic curve cryptosystems using these field
arithmetic operators.

When we compared the hybrid polynomial multiplier with
the hybrid ONB multiplier under similar performance, the
former was implemented with smaller hardware than the latter.
As for inversion, ONB inversion operator had merits of area
efficiency and high performance. Although ONB square was
achieved only cyclic shift with no addition logics, polynomial

square was also implemented with very small area and high
performance, therefore it seems that the difference of the two is
slight. If we design an elliptic curve cryptosystem using these
arithmetic operators for each basis, the performance difference
of the two systems will be caused by the performance
difference of inversion operators of each basis. So, in affine
coordinate which needs many inversion operations, the
performance of the ONB cryptosystem will be superior to the
other. For example, a polynomial ECC system using affine
coordinate over GF(2233) will be needed more about 76,000
clocks than ONB system. But, using projective coordinate,
inversion is needed only one time, so it seems that the
performance of the two cryptosystems will be similar and area
efficiency of polynomial basis will be better than ONB. In
future work, we are going to implement these elliptic curve
systems using the above operators and verify the prediction of
this paper.

REFERENCES
[1] Certicom research , The Elliptic Curve Cryptosystem, Certicom, April

1997.
[2] Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software

Implementation of Elliptic Curve Cryptography over Binary Fields,
CHES 2000, page 1-24. 2000.

[3] Certicom research, "SEC 2 : Recommended Elliptic Curve Domain
Parameters", October 1999.

[4] Richard Schroeppel, Hilarie Orman, Sean O'Malley, "Fast Key Exchange
with Elliptic Curve Systems", TR-95-03(Tucson, AZ: University of
Arizona, Computer Sciences Department, 1995)

[5] Mastrovito, E. D. : 'VLSI architectures for computations in Galois
fields'PhD Thesis, Linkoping University, Department of Electrical
Engineering, Linkoping, Sweden, 1991.

[6] Sunar, B. and Koc, C. K.: 'Mastrovisto multiplier for all trinomials', IEEE
Trans. Comput. 1999, 48, (5), pp. 522-527.

[7] Wu, H. : 'Bit-parallel finite field multiplier and square using polynomial
basis', IEEE Trans. Comput., 2002, 51, (7), pp. 750-758.

[8] Chiou, C. W, Chou F. H. and Shu S. F : 'Low-complexity finite field
multiplier using irreducible trinomials', Electron. Lett., 2003, 39, (24), pp.
1709-1711

[9] Huapeng Wu, Anwar Hasan, “ Finite Field Multiplier Using Redundant
Representation” , IEEE Transactions on Computers, Vol 51, No 11,
November 2002 .

[10] HoWon Kim, Thomas Wollinger, YongJe Choi, Kyoil Chung, and
Christof Paar, "Hyperelliptic Curve Coprocessors on a FPGA," The 5th
International Workshop on Information Security Applications (WISA
2004), Aug. 23-25, 2004, JeJu, Korea (LNCS: SCI-E)

[11] Y.J. Choi, K.-Y. Chang, D.W. Hong and H.S. Cho, "Hybrid multiplier for
GF(2m) defined by some irreducible trinomials" Electronics Letter,
Volume 40 852-853, Number 14, 8th July 2004.

[12] C. K. Koc, and B. Sunar, "Low-Complexity Bit-Parallel Canonical and
Normal Basis Multipliers for a Class of Finite Fields", IEEE Trans on
Comp. Vol 47, No 3, March 1998.

[13] J. Omura and J. Massey, "Computational Method and Apparatus for Finite
Field Arithmetic" U.S. Patent Number 4,587,627

