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Abstract— Polynomial bases and normal bases are both used for 

elliptic curve cryptosystems, but field arithmetic operations such as 
multiplication, inversion and doubling for each basis are implemented 
by different methods. In general, it is said that normal bases, especially 
optimal normal bases (ONB) which are special cases on normal bases, 
are efficient for the implementation in hardware in comparison with 
polynomial bases. However there seems to be more examined by 
implementing and analyzing these systems under similar condition. In 
this paper, we designed field arithmetic operators for each basis over 
GF(2233), which field has a polynomial basis recommended by SEC2 
and a type-II ONB both, and analyzed these implementation results. 
And, in addition, we predicted the efficiency of two elliptic curve 
cryptosystems using these field arithmetic operators. 
 

Keywords— Elliptic Curve Cryptosystem, Crypto Algorithm, 
Polynomial Basis, Optimal Normal Basis, Security.  

I. INTRODUCTION 
LLIPTIC Curve Cryptosystems (ECCs) were proposed in 
1985 by Neal Koblitz[3] and Victor Miller[4]. The security 

of ECC is based on the discrete logarithm problem over the 
points on an elliptic curve. The discrete logarithms problem of 
ECC is known as more difficult problem than the prime number 
factorization problem of RSA algorithm. The security problems 
of cryptosystems, such as the discrete logarithms and prime 
factorization, are closely related to the key length of 
cryptosystems. If the security problem is more difficult then 
smaller key length can be used with sufficient security. In fact, 
it is known that the elliptic curve cryptosystem over GF(2233) 
provides same security as of 2,048-bit RSA cryptosystem[1]. 
This smaller key length makes ECCs suitable for practical 
applications such as embedded systems and wireless 
applications.  

ECCs in general are implemented over prime fields or binary 
fields. Arithmetic operations used in prime fields are similar to 
arithmetic operations used in RSA cryptosystems. For binary 
fields they are different according to bases used. Two of the 
most common bases used in binary fields are the polynomial 
basis and the normal basis. Any bases in both can be used for 
ECCs, however, some special cases such as trinomial bases, 
pentanomial bases and optimal normal bases (ONBs) are, in 
practice, used for the purpose of efficient operations. The 
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ONBs especially are known to be more efficient for hardware 
implementation than polynomial bases because the 
multiplication operation can be performed very efficiently and 
inversion can be achieved by repeated multiplication typically 
using the method of Itoh and Tsujii and doubling can be 
executed by only one cyclic shift operation. However these 
facts seem to be more examined by implementing analyzing 
these systems under similar condition.  

For this purpose, we designed field arithmetic operators for 
each basis over GF(2233), which field has a polynomial basis 
recommended by SEC2[3] and a type-II ONB both, and 
analyzed these implementation results. And, in addition, we 
also predicted the efficiency of two elliptic curve 
cryptosystems using these field arithmetic operators.  

II. IMPLEMENTATION OF FINITE FIELD ARITHMETIC 
OPERATIONS 

As we said upper, we will deal with two bases which are 
polynomial basis and normal basis. Polynomial basis 
representation over GF(2m) is as follow. 
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And, normal basis representation over GF(2m) is as follow. 
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The addition over GF(2m) is simply logical XOR operation 

of the corresponding coefficients regardless of basis. 
Arithmetic operations for elliptic curve cryptosystems such as 
multiplication, squaring and division except addition are 
achieved by different methods according to bases used. In this 
chapter, we will describe operation methods in each basis and 
its implementation.  

A. Multiplication 
Multiplication in polynomial basis is achieved to two steps. 

The first step is to multiply two binary polynomials together. 
Then it yields a product polynomial degree up to 2m-2. Next, 
this result should be reduced modulo the irreducible 
polynomial degree of m.  

As multiplication methods in polynomial basis, there are 
bit-serial methods [5, 8] and bit-parallel methods [6, 7, 9]. The 
bit-serial methods can be implemented with a small size of 
hardware, but it must repeat operations more than m times and 

Implementation and Analysis of Elliptic Curve 
Cryptosystems over Polynomial basis and ONB 

Yong-Je Choi, Moo-Seop Kim, Hang-Rok Lee and Ho-Won Kim  

E 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3026

 

 

these iterations reduce the system performance. On the other 
hand, the bit-parallel method may expect a high performance, 
but according to enlargement of the degree m, its hardware area 
increases asymptotically with m2. For example, a 233-bit 
parallel multiplier of Sunar and Koc[6] requires 54,288 XOR 
gates and 54,289 AND gates, and it is too large to implement on 
a general commercial FPGA.  

For this reason, we proposed a hybrid multiplier for GF(2m) 
defined by an irreducible trinomial xm + xn + 1 (n≤m/2) in 
[11], which can be constructed in variable structures depending 
on the performance-area trade-off. The structure of it is shown 
in a following picture 1. The proposed hybrid multiplier 
requires km AND gates, km+2k-1 XOR gates and TX + ⎡m/k⎤ 
(max{TA, TX}+ ⎡log2(k+1)⎤ TX) delays, where TA is an AND 
gate delay and TX is a XOR gate delay.  

 

 
Fig. 1 Structure of the hybrid polynomial multiplier 

 
Multiplication in a general normal basis can be achieved by 

Massey-Omura multiplication method[13]. For ONB, which 
has special cases so called Type I and Type II and performs 
efficiently multiplication, it is implemented some different 
way. Multiplication for Type I ONB is achieved by Modified 
Massey-Omura multiplication method. For Type II ONB, 
GF(2233) of this paper is applicable to this case, Sunar and Koc 
[12] proposed a parallel multiplier optimized for area. 
Sunar-Koc’s multiplication method is executed as follows. It 
firstly changes the bases of two multiplication elements to 
canonical bases for efficient calculation. And then it multiplies 
two elements changed in canonical basis. After multiplication, 
the result is converted back to the normal basis. Because basis 
conversion is implemented by only logic wiring, it needs no 
additional logics. 

A hybrid multiplier for Type II ONB was proposed by 
Wu-Hasan in [9]. After basis conversion as like [12], they 
extend degree of the multiplier b(x) to 2m-1 and save it at the 
register. The multiplier b(x) saved and the multiplicand a(x) is 
performed bit-wise operations as like following picture 2. The 
operation logic of the picture outputs one bit among 

multiplication results and this operation logic can be used in 
parallel as many as need for whole multiplication operation 
depending on the performance-area trade-off.  

 

 
Fig. 2 Bit operation block of the Wu-Hasan multiplier 

 
The following picture 3 is the structure of the hybrid 

multiplier for Type II ONB. This is implemented with registers 
to save inputs and results, (2m-1)k XOR gates, and  km AND 
gates, and its operation time is ⎡m/k⎤(TA+(1+⎡log2m⎤)TX). 

 

 
Fig. 3 structure of the hybrid multiplier for Type II ONB 

 

B.  Squaring 
Squaring in polynomial basis can be performed using a 

multiplication block by inputting the same value at two inputs. 
Squaring, however, is used frequently in elliptic curve 
operations, therefore it using the multiplication block slows 
down the crypto systems. It in polynomial basis is achieved by 
bit extension and reduction. Bit extension is performed by 
inserting a ‘0’ bit between consecutive bits of the binary 
representation of the input value. If an irreducible polynomial is 
not changed, then these procedures can be precomputed. In 
GF(2233) with irreducible polynomial x233 + x74 +1,  squaring is 
executed with 153 XOR gates and its operation time is TX. That 
is to say, squaring in polynomial basis is implemented in very 
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small area with high performance.  
As we said before, squaring in ONB can be achieved by only 

a cyclic shift operation. In hardware implementation, a cyclic 
shift operation is implemented by logic wiring with no 
additional logics. 

C. Inversion 
As inversion algorithms for polynomial bases, Extended 

Euclidean algorithm (EEA) and Almost Inverse Algorithm 
(AIA) are commonly used [6]. In software implementation, the 
running time of EEA is similar to AIA. AIA, however, is more 
desirable for hardware implementation because operations are 
calculated bit by bit and post-operations are predicted 
efficiently, although AIA needs separate operation multiplying 
x-k. In MAIA (Modified AIA), this inverse reduction step is 
modified to perform directly. We enhanced the MAIA in point 
of parallel operation and prediction of post-operations at [10]. 
The following picture 4 is the structure of the inversion 
operator. Its operation time is about 250 cycles, which may be 
changed by input value. 

 

 
Fig. 4 structure of the inversion operator 

 
Inversion in normal bases is achieved by Itoh and Tsujii 

algorithm. IT algorithm iterates multiplication and squaring. 
However squaring is only a shift operation; therefore it uses 
only multiplication logics in hardware implementation. It was 
enhanced to reduce the number of iterations by Chang  and 
Takigi but it is applicable for some special cases. So in this 
paper we used IT algorithm for inversion. Picture 5 is the 
structure of the inversion operator. As you can see the picture, 
ONB inversion hardware is easily implemented by adding 
some multiplexers and registers to the multiplication logic. This 
ONB operator can achieve both multiplication and inversion 
according to a mode value. In GF(2233), inversion needs 10 
iterations of multiplication. 

 

 
Fig. 5 structure of the inversion operator for ONB 

III. ANALYSIS OF IMPLEMENTATION RESULTS AND 
PERFORMANCE PREDICTION OF ECC SYSTEMS 

In this chapter, we will analyze the arithmetic operators 
implemented above and predict the performance of elliptic 
curve cryptosystems according to basis. Arithmetic operators in 
GF(2233) is synthesized and verified at a xilinx virtex-2 8000 
FPGA which is going to be used for our ECC system. 

A. Analysis of implementation results 
In implementing hardware not only logic delay but also 

routing delay affects performance. The routing delay is 
important especially at high-performance public key 
cryptosystems, which need operators to calculate over a 
hundred bit at the same time. In elliptic curve cryptosystems the 
multiplication logic dominates the hardware area. Table 1 
shows the synthesis results of our hybrid polynomial multiplier. 
(The result may be changed minutely according to synthesis 
environment.) We examined the multiplier changing the 
operation bit from 59 to 233. When the operation bit is 59, it 
needs 4 operation clocks. As you can see in the table, according 
as the hardware area increases, the routing delay dominates the 
hardware performance.  

TABLE I   
SYNTHESIS RESULTS OF OUR HYBRID POLYNOMIAL MULTIPLIER 

Synthesis Result Operation Bit 
(operation 

cycle) 
Delay 
(ns) 

Area 
(slices) 

Theoretical Delay

233 
(1 clock) 24 28,000 Max{TA, TX} + 

9TX 
117 

(2 clocks) 20 13,300 Max{TA, TX} + 
8TX 

59 
(4 clocks) 18 5,100 Max{TA, TX} + 

6TX 
 
Synthesizing our polynomial inversion hardware at FPGA, 

its hardware area is 2,124 slices and its operation time is below 
19ns, so it can be operated over 50MHz. Squaring hardware is 
synthesized in 108 slices, and addition hardware is 84 slices. 
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As for ONB, addition logic is 108 slices like polynomial and 
arithmetic operator, which can perform both multiplication and 
inversion, is synthesized in 18,800 slices. At this time its 
operation bit is 117-bit. Only 117-bit ONB multiplier is 
implemented in 17,600 slices, therefore about 1,100 slices is 
added for inverse operation. The maximum delay is 21ns and 
its operation cycle is 2 clocks for multiplication and 30 clocks 
for inversion.  

In comparison with a polynomial multiplier and an ONB 
multiplier, we can see that the former is a little superior to the 
later in the point of view of area and performance. This fact can 
be verified by observing the area and delay needed 
theoretically. Table 2 shows these comparisons. 

TABLE 2 COMPARISON WITH A POLYNOMIAL MULTIPLIER AND AN 
ONB MULTIPLIER 

117 Bit 59 Bit  
Poly ONB Poly ONB 

XOR Gate 27,494 54,405 13,629 27,435 
AND Gate 27,261 27,261 13,514 13,514 
Operation 

Time 
2max{TA, 

TX }+ 15TX 
2TA + 
18TX 

4max{TA, 
TX }+ 25TX 

4TA + 
36TX 

 

B. Performance prediction of elliptic curve cryptosystems 
Not only field arithmetic operators but also coordinates for 

elliptic curve operations and scalar multiplication methods 
dominate cryptosystem’s performance. Two of the most 
common coordinates used in ECC are the affine coordinate and 
the projective coordinate. Scalar multiplication is the operation 
to compute kP, where k is a random integer and P is an elliptic 
curve point, and it can be defined the combination of additions 
of two points on an elliptic curve.  

The most basic implementation method of ECC is to use an 
affine coordinate and a binary scalar multiplication method. 
The addition of two points on an elliptic curve over an affine 
coordinate is defined as following algorithm 1. (The elliptic 
curve over GF(2m) given by the equation y2 + xy = x3 +ax2 + b 
and P1 and P2  are the points on the elliptic curve). This elliptic 
curve addition needs two field multiplications and one 
inversion. 

 
Algorithms 1. Point Addition Equation in affine coord. 
 
Input : P1 = (x1 , y1) , P2 = (x2  , y2). 
Output : P3 = P1 + P2 = (x3, y3). 
1. If P1 = P2  (doubling) 

x3 = λ2 + λ + a,  y3 = x1
2 + (λ + 1) x3 

where (λ = x1 + y1 / x1 )  
2. Else if P1 ≠ P2 (point addition) 

x3 = λ2 + λ + x1 + x2 + a,   
y3 = λ(x1 + x3) + x3 +  y1 
where (λ = ( y2 + y1 ) / ( x2 + x1 ) ) 

3. Return (x3  , y3) 
 

 
The binary scalar multiplication method is shown in 

algorithm 2. 

Algorithm 2. Binary method for scalar multiplication 
Input : k = (kt-1, … , k2, k1, k0)2, P ∈ GF(2m). 
Output : kP. 
1. Q  O. 
2. For i from t −1 downto 0 do 

2.1 Q  2Q. 
2.2 If ki = 1 then Q  Q + P. 

3. Return (Q) 
 

In the case of implementing an elliptic curve system using 
117-bit hybrid multipliers and binary scalar multiplication 
method, its hardware area and operation time are as following 
table 3. 

TABLE 3  COMPARISON OF ECC SYSTEMS USING AFFINE 
COORDINATE 

Area (slices) 
` 

MUL INV ETC 
(App.) 

Total 
(App.) 

Operati
on Time
(App.) 

Polynomial 
Basis 13,300 2,214 1,500 17,000 88,500 

clocks 
Optimal 
Normal 
Basis 

18,800 1,200 20,000 11,500 
clocks 

 
Comparing the hardware areas, the elliptic curve 

cryptosystems for polynomial basis is implemented by small 
area than that of ONB. However considering the performance, 
ONB is far superior to polynomial system above table. It is 
caused because of difference of inversion performance of the 
two bases.  

For high-performance system, projective coordinate and 
scalar multiplication methods using pre-computation are used. 
In projective coordinate, multiplication operation numbers are 
increased but inversion is achieved only one time. Because 
multiplication is very faster than inversion in hardware and 
multiplications can be achieved in parallel, the ECC system 
over projective coordinate is suited for the high performance 
cryptosystem. The addition of two points on an elliptic curve 
over a projective coordinate is defined as following algorithm 
3. The results calculated in projective coordinate should be 
converted back to the affine coordinate. This operation is done 
by x/z, y/z2. At this time, inversion is used only one.  
  

Algorithms 3. Point Addition Equation in projective coordinate. 
Input : P0 = (x0 , y0, z0) , P1 = (x1, y1, 1). 
Output : P2 = P0 + P1 = (x2, y2, z2). 
1. If P0 = P1  (doubling) 

Z2 = Z0
2 * X0

2, 
X2 = X0

4 + b * Z0
4, 

Y2 = b * Z0
4 * Z2 + X2 * (a * Z2 + Y0

2 + b * Z0
4). 

2. Else if P0 ≠ P1 (point addition) 
A = Y1 * Z0

2, + Y0 ,   B = X1 * Z0 + X0 , 
C = Z0 * B ,            D = B2 * (C + a * Z0

2) , 
Z2 = C2 ,                 E = A * C , 
X2 = A2 + D + E ,       F = X2 + X1 * Z2 , 
G = X2 + Y1 * Z2 ,       Y2 = E * F + Z2 * G , 

3. Return (x3, y3, z3) 
 

Using two multipliers in parallel, the operation flow for 
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elliptic curve addition over projective coordinate is shown in 
picture 6. This flow is applicable equally for both polynomial 
basis and ONB. If we use binary scalar multiplication method 
with two multipliers, then expectation results of hardware 
performance and area will be as following table 4. As you can 
see, we will expect that the difference of the ECC systems of 
two bases is slight if both performance and area are considered. 
Performance difference may be from the difference of only one 
inversion operation of each basis.  

 

 
Fig. 6 Operation flow for elliptic curve addition over projective 

coordinate 
 

TABLE 4  COMPARISON OF ECC SYSTEMS USING PROJECTIVE 
COORDINATE 

Area (slices) 
 

MUL INV ETC 
(App.) 

Total 
(App.) 

Operation 
Time 

(App.) 

Polynomial 
Basis 26,600 2,214 5,000 34,000 3,420 

clocks 
Optimal 
Normal 
Basis 

18,800 + 
17,700 3,000 39,500 3,200 

clocks 

 

IV. CONCLUDING REMARKS 
In this paper, we designed field arithmetic operators for 

polynomial basis and ONB over GF(2233) and analyzed these 
implementation results. On the basis of results we predicted the 
efficiency of two elliptic curve cryptosystems using these field 
arithmetic operators.  

When we compared the hybrid polynomial multiplier with 
the hybrid ONB multiplier under similar performance, the 
former was implemented with smaller hardware than the latter. 
As for inversion, ONB inversion operator had merits of area 
efficiency and high performance. Although ONB square was 
achieved only cyclic shift with no addition logics, polynomial 

square was also implemented with very small area and high 
performance, therefore it seems that the difference of the two is 
slight. If we design an elliptic curve cryptosystem using these 
arithmetic operators for each basis, the performance difference 
of the two systems will be caused by the performance 
difference of inversion operators of each basis. So, in affine 
coordinate which needs many inversion operations, the 
performance of the ONB cryptosystem will be superior to the 
other. For example, a polynomial ECC system using affine 
coordinate over GF(2233) will be needed more about 76,000 
clocks than ONB system. But, using projective coordinate, 
inversion is needed only one time, so it seems that the 
performance of the two cryptosystems will be similar and area 
efficiency of polynomial basis will be better than ONB. In 
future work, we are going to implement these elliptic curve 
systems using the above operators and verify the prediction of 
this paper.  
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