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Abstract—Change in impedance of an encircling coil is obtained 

in the present paper for the case where the electric conductivity and 
magnetic permeability of a metal cylindrical tube depend on the 
radial coordinate. The system of equations for the vector potential is 
solved by means of the Fourier cosine transform. The solution is 
expressed in terms of improper integral containing modified Bessel 
functions of complex order.  
 

Keywords—Eddy currents, magnetic permeability, Bessel 
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I. INTRODUCTION 
DDY current methods are widely used in practice for 
quality control of products of a cylindrical shape [1] –[4]. 

Theoretical models are developed in [5], [6] for the case of 
planar multilayer media. Analytical solutions are obtained for 
the case of cylindrical geometry in [7]. The solution for a rod 
of finite length is given in [8]. The solutions obtained in [5]–
[7] are found for the case of constant electric conductivity and 
magnetic permeability of the conducting medium.  

In some industrial processes (examples include surface 
hardening and de-carbonization) the electric and magnetic 
properties of conducting layers can change with respect to 
geometrical coordinates (see [9], [10]). The assumption of 
constant electric conductivity and magnetic permeability is not 
valid anymore. Mathematical models describing the 
interaction of alternating current in a coil with objects of 
cylindrical shapes should be modified and variability of the 
parameters of the medium should be taken into account.  

There are at least two possible solutions of the problem. 
First, one can still use analytical solutions [7] for the case of 
multilayer medium with constant properties in each cylindrical 
layer. In this case variability of the parameters of the medium 
is taken into account by using large number of layers with 
constant properties. In other words, electric conductivity and 
magnetic permeability are piecewise constant functions of the 
radial coordinate. Second, analytical solutions of the problem 
can be found in some cases where the electric conductivity 
and magnetic permeability are given functions of the radial 
coordinate.  

The second approach is followed in the present paper. Two-
parameter family of electric conductivity and magnetic 
permeability profiles are used in the paper in order to 
construct an analytical solution for the change in impedance 
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of an encircling coil due to a two-layer cylindrical tube. The 
properties of the outer layer are assumed to vary with respect 
to the radial coordinate. The solution is found in terms of 
improper integral containing modified Bessel functions of 
complex order.  

II. FORMULATION OF THE PROBLEM 

   Consider a coil of radius 
cr with alternating current of the 

form 
ϕϕ ω etjIeti rr )exp()( = situated in a plane 

perpendicular to the axis of a two-layer infinitely long tube 
with external and internal radii 

1
~r and 

2
~r , respectively, where 

I is the amplitude of the current in the coil, ω is the 
frequency and 

ϕer is a unit vector in the ϕ direction. The 

center of the coil lies on the axis of the tube. Let ),,( zr ϕ be 
a system of cylindrical polar coordinates centered at the origin 
O.  

   In this case the amplitude of the vector potential, A
r

, has 
only one non-zero component in the ϕ -direction which is the 
function of r and z only: 
 

ϕezrAA rr
),(=                                                                    (1) 

 
   We use 

1
~r as the measure of length, thus 

1210
~/~,~/ rrRrrr c == .  

The amplitudes, ),,( zrAi 2,1,0=i , of the vector potential 
satisfy the following system of equations in regions 

10 , RR and 
2R : 
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where )(xδ is the Dirac delta-function, 
0μ is the magnetic 

constant, 
iσ and 

iμ are the electric conductivity and magnetic 
permeability of region ,2,1, =iRi

respectively.  
    Some analytical solutions for the case where only the 
magnetic permeability of region  

1R    is a function of the 
radial coordinate are given in [11]. In this paper we generalize 
the solution presented in [11] for the case of encircling coil 
where both the electric conductivity and magnetic 
permeability of region 

1R are functions of the radial 
coordinate of the form 
 

βα σσμμ rr *1*1 , == ,                                                   (5) 
 
where α and β are real numbers.  
Substituting (5) into (3) we obtain the following equation in 
region 

1R : 
 

,0

1)1(

2
1

2

1
2

12
1

2
1

2

=
∂

∂
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+
−

∂
∂−

+
∂

∂ +

z
A

Arp
rr

A
rr

A βααα
              

(6) 
 
where 

0**1111
~, μμωσηη rjp == . 

The boundary conditions have the form 
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III. PROBLEM SOLUTION 
Applying the Fourier cosine transform  
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to the solution of (2), (4), (6), (7) – (10) we obtain 
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where   

2
2

2 pq += λ  , 
0221222

~, μμωσηη rjp ==  .     

Using the notation )/( **22 μσμσ=s      

we obtain .12 ηη s=                                        
The boundary conditions are 
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where αμμ R*
~ = . 

It is convenient to consider two sub-regions of region 
0R , 

namely, 
01 rr << and 

0rr > . The solutions in regions 

01 rr << and 
0rr > are denoted by ),(~

00 λrA and 

),(~
01 λrA , respectively. The general solution to (12) in 

region 
01 rr << is 

 
),()(),(~

121100 rKCrICrA λλλ +=                            (18) 
 
where )(1 rI λ and )(1 rK λ are the modified Bessel functions 
of order one of the first and second kind, respectively.  
Using (17) we conclude that the bounded general solution to 
(12) in region 

0rr > is 
 

).(),(~
1301 rKCrA λλ =                                                  (19) 

 
Equation (13) can be solved in terms of different special 
functions for different values of α and β . In this paper we 
consider one particular case, namely, 1−=α and 1−=β . 
Then the solution to (13) is (see [12]): 
 

,)()(),(~
541 r

rKC
r
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where 4/12

1 += pν .  
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The bounded solution to (14) has the form 
 

).(),(~
162 qrICrA =λ                                                    (21) 

There are six unknown constants in (18)-(21) and only four 
boundary conditions (15) and (16). The remaining two 
conditions are obtained at 

0rr = . First, the functions 

),(~
00 λrA and ),(~

01 λrA are continuous at 
0rr = : 
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Integrating (12) with respect to r from ε−= 0rr to 

ε+= 0rr and considering the limit in the resulting equation 
as 0+→ε we obtain the last boundary condition in the form 
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Using conditions (15), (16), (22) and (23) we obtain all 
unknown constants 

621 ,...,, CCC in (18)-(21). The solution 
is 
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Here we used the notations 
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The Fourier cosine transform of the induced vector potential 
in region 

0R due to the presence of electrically conducting 
magnetic two-layer tube is  
 

)(),(~
120 rKCrA ind λλ = .                                              (24) 

 
Applying the inverse Fourier cosine transform of the form 
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we obtain the amplitude of the induced vector potential in 
region 

0R in the form 
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The induced change in impedance in the coil due to the 
presence of the conducting tube can be computed as follows 
 

∫=
L

indind dlzrA
I
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ω                                            (26) 

 
where L is the contour of the coil. Calculating the integral in 
(26) we obtain the induced change in impedance of the form 
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where 
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IV. NUMERICAL RESULTS 
Formula (27) is used to compute the change in impedance 

of a coil for different values of the parameters of the problem. 
Calculations are done with “Mathematica”. The change in 
impedance, Z , is plotted in Fig. 1 for three values of 

0r , 
namely, 2.1,1.10 =r and 1.3 (from right to left). The other 
parameters are as follows: 

.5.1,8.0,4,1 21 ==== sRμμ The points on the curves 
correspond to the following values of 10,...,3,21 =η (from 
top to bottom).  
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Fig. 1 The change in impedance calculated by formula (27) for three 

different values of 
0r  

 
It follows from Fig. 1 that the increase in frequency (larger 

values of 
1η ) leads to smaller values of  the real part of the 

change in impedance. On the other hand, the imaginary part of 
the change in impedance increases as 

1η grows.  
The values of Z for three different values of 

2μ , namely, 

6,4,22 =μ (from left to right) are plotted in Fig. 2. The 
other parameters are set at 

.5.1,8.0,1.1,1 01 ==== sRrμ  The points on each 
curve correspond to the following values of 

10,...,3,31 =η (from top to bottom).  
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Fig. 2 The change in impedance calculated by formula (27) for three 

different values of 
2μ  

 
It is seen from Fig. 2 that for large frequencies (large values of 

1η ) the change in impedance is almost independent on 

2μ since all the three curves are very close to one another.  

V. CONCLUSIONS 
Closed-form solution for the change in impedance of an 

encircling coil located outside a two-layer metal tube is found 
in the present paper. The electric conductivity and magnetic 
permeability of the outer layer of the tube are power functions 
of the radial coordinate. The solution is obtained by the 
method of Fourier cosine integral transform. Computational 

results show that for large frequencies the change in 
impedance is almost independent on the properties of the 
inner layer. 
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