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Abstract—Treating data based on its location in memory has
received much attention in recent years due to its different properties,
which offer important aspects for cache utilization. Stack data and
non-stack data may interfere with each other’s locality in the data
cache. One of the important aspects of stack data is that it has high
spatial and temporal locality. In this work, we simulate non-unified
cache design that split data cache into stack and non-stack caches in
order to maintain stack data and non-stack data separate in different
caches. We observe that the overall hit rate of non-unified cache
design is sensitive to the size of non-stack cache. Then, we
investigate the appropriate size and associativity for stack cache to
achieve high hit ratio especially when over 99% of accesses are
directed to stack cache. The result shows that on average more than
99% of stack cache accuracy is achieved by using 2KB of capacity
and 1-way associativity. Further, we analyze the improvement in hit
rate when adding small, fixed, size of stack cache at levell to unified
cache architecture. The result shows that the overall hit rate of unified
cache design with adding 1KB of stack cache is improved by
approximately, on average, 3.9% for Rijndael benchmark. The stack
cache is simulated by using SimpleScalar toolset.

Keywords—Hit rate, Locality of program, Stack cache, and Stack
data.

[. INTRODUCTION

HE new era of computer systems requires performance

optimization to handle the huge amount of data. A major
current focus in improving the performance is in the area of
using parallelism. The goal of parallelism is to reduce the
execution time of a program by executing multiple tasks
simultaneously.

The well-known divide-and-conquer scheme is considered
as a powerful technique for designing efficient algorithms. It
has been proven that divide-and-conquer is a useful paradigm
for sequential as well as parallel algorithms [1], [2]. Divide-
and-conquer is a problem-solving technique that divides a
problem into smaller sub-problems and then solves these sub-
problems. Once the sub-problems have been solved, merging
their solutions is started to construct a solution to the original
problem. The divide-and-conquer method is naturally solved
by using a recursion function. Upon each function call, a new
stack frame is located in specific region of memory called
stack segment. Hence, the stack segment is significantly used
during function calls.
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The stack segment is one region of program’s virtual
memory and it is used to store dynamic variables with other
certain information when function is called. It is clear that
stack data that is retrieved form stack segment has different
characteristics than non-stack data that is received from other
segments as observed previously in [3], [4], [5], [8]. The stack
data occupies contiguous locations in memory and thus it has
a clear special and temporal locality. The stack data tends to
be for a short period of time compared to non-stack data.
Thus, keeping it in a separate cache, such as stack cache
would maintain non-stack data from effecting and hence
would improve the performance.

Studying the behavior of the stack is vital for two important
reasons. First, researchers have shown that the frequency of
stack accesses is approximately 33%-60% of memory accesses
[4], [5]. This percentage of stack accesses is a considerable
amount and indicating a need for this segment to be optimized.
Second, the stack segment is fairly often used in sorting
algorithms especially parallel sorting algorithms. Parallel
sorting algorithms are based on divide-and-conquer scheme,
which requires involving function calls. Sorting is considered
as a fundamental component of numerous applications in
computer systems. For example, sorting is used in indexing
method for organizing data recode in database systems. Since
then, parallel sorting algorithms have generated considerable
recent research interest [7], [9]. Sorting is a core competent of
high performance computing. Implying the stack segment is
mostly used in these kinds of applications.

Based on the above reasons, we investigate the stack
segment in more details. The approach we have used in this
study aims to analyze the characteristics of stack data in terms
of its effectiveness on other non-stack data. Also, this work
aims to investigate the appropriate size and associativity to
accommodate stack data, especially if the percentage of stack
references is over 99% of memory references. In addition, we
evaluate the cost effectiveness of adding one more cache at
level 1 cache. By adding one more cache, there will, then, be
three level-one caches, namely, the two common instruction
and data caches, as well as the new stack cache which
primarily handles stack data.

The rest of this paper is organized as follows: Section II
presents related work, followed by a section that provides a
background and describes stack cache implementation. In
Section IV, experimental setup is introduced and in Section V
the experimental result is evaluated. Section VI concludes the
paper and presents the future work.
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II. RELATED WORK

Stack cache has generated considerable recent research
interest. The properties of data representing stack segment are
different than other memory segments, leading researchers to
take advantage of these properties.

Olson et al. investigated energy efficiency by exploiting
stack data characteristics [5]. They found that stack segment
accesses have different behavior than others memory accesses
in terms of footprint, frequency and ratio of load and store.
They observed that on average, 40% of memory references are
to the stack for SPEC 2006 workload. The ratio of writes to
reads for stack accesses was higher than non-stack accesses.
Based on these characteristics, they proposed implicit stack
cache and explicit stack cache to reduce energy consumption.
In implicit stack cache, specific ways of L1 data cache was
reserved for storing only stack data while in explicit stack
cache, different L1 cache was used to store the stack data. The
result showed that implicit stack cache method minimized the
dynamic energy of L1 data cache by 37% and explicit stack
cache minimized the dynamic energy by 36% on average.

Hemsath et al. proposed stack cache that acts as a window
in the current stack frame and predicted the recent used data to
be maintained in the stack cache [4]. The stack cache is
implemented as a circular buffer. In their proposed stack cache
implementation, there is a stack cache unit that observes the
modification on the stack pointer. When the stack pointer is
modified, the Top and Bottom pointer of the circular buffer
are adjusted to keep track of the new stack frame; valid data.
There is another unit is called stack cache prefill/spill unit.
This unit predicts either the stack segment is going to grow or
to shrink and, thus, it keeps the useful data most of the time in
the stack cache. The result showed improvement in the speed

up by 1% to 4% for some of their workload set.
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Romansky and Lazarov proposed a new prefetching method
to improve the locality and hence improve the performance
[10]. Upon every procedure call, a procedure frame is reserved
in memory. Their technique is to prefetch all or almost all of
the stack data and caching them into stack cache memory. The
result showed that 99% of accuracy was achieved by using
their proposed stack cache memory.

TABLEI
SC AND NON-SC ACCURACY

Non-SC Accuracy on Average SC Accesses  SC Accuracy on Average
Benchmarks Non-SC Accesses

1 KB 2KB 4KB 1 KB 2KB 4KB
dijkstra 93% 0.898  0.927 0.966 7% 1 1 1
compr-ss95 92% 0.887 0.907 0.922 8% 1 1 1
sha 14% 0.948 0.948 0.991 86% 0.991 0.991 0.991
anagrm 68% 0914 0.944 0.971 32% 1 1 1
perl 70% 0.810 0.860 0.907 30% 0.997 0.999 1
go 67% 0.607 0.733 0.847 33% 1 1 1
AES 58% 0.485  0.610 0.849 2% 1 1 1
gce 42% 0.822 0.877 0.918 58% 0.981 0.991 0.996

Avg 0.796 0.851 0.921 Avg 0.996 0.998 0.998

III. BACKGROUND AND STACK CACHE IMPLEMENTATION

A program is a collection of instructions and data. When the
program is lunched, it is loaded into memory via an operating
system. Each program has its own virtual memory that is
consists of several regions. The typical regions of memory
include text segment, initialized data segment, uninitialized
data segment (bss), heap and stack segment.

The stack segment, in x86 processor, is located at the top of

virtual memory and grows towards the lower addresses as
shown in Fig. 1. It is used to store local variables along with
other certain information each time a procedure call is
executed. Each segment of the virtual memory, stack or non-
stack, has its own specific characteristics. In this paper, we
investigated the characteristic of stack region because it shows
that it has a predictable behavior.
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Fig. 3 Hit ratio of unified cache and non-unified cache architecture

For the purpose of analyzing the characteristics of stack
data, we implemented stack cache as shown in Fig. 2 (b). The
basic idea is to split the level 1 data cache as shown in Fig. 2
(a) into two caches; Stack Cache (SC) and non-Stack Cache
(non-SC). The stack cache maintains, only, the data that is
retrieved from the stack segment, whereas non-stack cache
obtains the data that is retrieved from different memory
segments, such as heap or bss segment. By using a separate
cache for stack data, we would be able to study this part of
memory (stack segment) in accurate manner.

The stack cache, in our approach, is implemented as the
way of the data cache in the classical cache organization is
implemented. So the stack cache could be organized as direct-
mapped, set associative or fully associative cache.

All memory accesses are classified as stack accesses if they
occur within a certain region of the virtual memory space.
Simply, the N most significant bits of the top address of
virtual memory that stack segment starts from are compared
with the address generated by a processor. If they match, the
access is classified as stack access; otherwise, classified as
non-stack access. The number of bits (N) that are needed to
classify memory accesses is 8 bits after experiments.

All stack accesses are directed to the stack cache and
similarly, all non-stack accesses are directed to the non-stack
cache. In case of hit, the data is supplied to the processor from
either stack or no-stack cache; but never both. In case of miss
in any of the two caches, the data is fetched from L2 cache or
from the lower memory in the hierarchy.

IV. EXPERIMENTAL SETUP

SimpleScalar toolset [6] was used to evaluate our approach.
A modification was needed to simulate the stack cache for the
non-unified cache architecture. The GCC compiler of

SimpleScalar architecture was, also, used to generate
simpleScalar benchmark binaries.

There were different workloads that we used in our
experiments. Some of the workloads that we ran were selected
from the SPECint95 sets. These benchmarks are gce, go,
anagram, compress95 and Perl. We used some other real
applications such as Rijndael, Dijkstra and SHA algorithms.
The Rijndael, also known as Advanced Encryption Standard
(AES), is an encryption algorithm established by National
Institute of Standard and Technology (NIST). The Dijkstra is
an algorithm that is used to find the shortest route between two
nodes in the graph. The Secure Hash Algorithm (SHA) is a
cryptographic hash function and it is, also, published by NIST.
Moreover, a quicksort workload was used. It is a well-known
algorithm that uses divide-and-conquer technique for sorting.
Since the quicksort is typically implemented by using a
recursion functions, the stack segment is extremely involved.
This variety of benchmarks that we analyzed would provide us
more accurate observations for our analysis. Especially, our
selected benchmarks cover almost all percentage of accesses
spectrum distribution. In the result section, we provide a table
classified the accesses of our benchmarks based on the
percentage of accesses that are directed to either stack or non-
stack cache.

In our baseline configuration for unified cache architecture,
the level 1 data cache has capacity of 8KB, the size of cache
line is 32B and the Least Recently Used (LRU) algorithm is
used for replacement policy. For non-unified cache
architecture, the size of both caches (stack and non-stack
cache) is various while the size of cache line and the
replacement policy remains the same as unified cache
architecture.
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V.RESULTS AND DISCUSSIONS

The total hit ratio of non-unified cache design is computed
as follow:

First, the percentage of memory accesses that are directed to
non-stack cache (f3) is calculated by the following:

non-SC-Accesses

p= non-SC-Accesses + SC-Accesses
where non-SC-Accesses represent the total number of accesses
that are directed to non-stack cache and SC-Accesses
represents the total number of memory accesses that are
directed to stack cache.

Then, the Total Hit Rate of non-unified cache architecture
(THR) is computed by:

THR = [ * Hit Rate(non-SC) + (1 — f) = Hit Rate(SC)

A. Unified Cache VS Non-Unified Cache Architecture

On both Figs. 3 and 4, we compared the hit ratio of the
baseline of unified cache architecture with the total hit ratio of
the baseline of non-unified cache architecture. For non-unified
cache architecture, the size of two caches (stack and non-
stack) varies from 1 KB to 4 KB and the total size of two
caches is less than or equal 8 KB. It is limited to be not more
than 8 KB for the simple reason that is to have a fair
comparison between two caches architecture (unified and non-
unified). The total size of both stack and non-stack caches in

non-unified cache architecture is less than or equal to the size
of level 1 data cache in unified cache architecture.

In Fig. 3, we fixed the size of non-stack cache to be 4KB
and varies the size of the stack cache from 1KB to 4KB. We
examined the total hit ratio of non-unified cache architecture
for each size of stack cache. As can be observed form Fig. 3,
splitting level 1 data cache into two caches (stack and non-
stack cache) a slightly reduces the overall accuracy in almost
all cases. This reduction on the accuracy is a consequence of
an increase in non-stack cache misses due to a downsizing in
the size of non-stack cache as illustrated in Table I. Also, Fig.
3 shows that the total hit rate of 4KB non-SC with size of
1KB, 2KB and 4KB of stack cache is identical in almost all
benchmarks that we ran. Indicating the possibility of reducing
the size of stack cache without sacrificing the accuracy.

Lastly, Fig. 3 illustrates the effectiveness of the
associativity on the hit ratio for both cache architectures.
Generally speaking, increasing associativity would either
increase the hit rate or maintain it the same for both cache
design in 7 benchmarks except AES.

In Fig. 4, we examined the same aspects that are in Fig. 3.
However, in this case we fixed the size of stack cache and
change the size of non-stack cache instead. In overall, the
unified cache design is still better in terms of the hit rate for
almost all benchmarks than non-unified cache design. Fig. 4,
also, shows that the hit rate of non-stack cache increases as its
size increases. Implying that non-stack cache is more size
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sensitive than stack cache. However, this is not the case of
SHA algorithm. In case of SHA algorithm, increasing the size
of non-stack cache does not help for obtaining higher hit rate
and that is, clearly, a result of the percentage of accesses to
non-stack cache is too small as listed in Table I. The

percentage of accesses is around 14% of the total memory
accesses in which turns out that the hit rate of non-stack cache
of different sizes does not affect the overall hit rate of the non-
unified cache.

TABLE IT
QUICKSORT BENCHMARK

Non-SC Accuracy on Average

SC Accesses SC Accuracy on Average

Number of Elements in an Array ~ Non-SC Accesses

1KB 2KB 4KB 1KB 2KB 4KB
1000 9% 0.972 0.972 0.972 91% 0.991 0.995 0.998
16000 3% 0.998  0.998 0.998 97% 0.989  0.993  0.996
128000 1% 1 1 1 99% 0.984  0.995  0.997
1280000 0.06% 1 1 1 99.94% 0.981 0.983 0.984
Avg 0.993  0.993 0.993 Avg 0986  0.992  0.994
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Fig. 6 Hit ratio of unified cache VS a case of adding 1KB for stack cache

B. Appropriate Size and Associativity for Stack Cache

Table I represents the accuracy of different sizes of stack
and non-stack cache. The benchmarks are divided into three
categories based on the percentage of accesses that are
directed to either stack or non-stack cache. For all
benchmarks, we calculated the average hit rate of both caches
(SC and non-SC) of different associativity that varies from 1-
way to 8-way. For example, the hit rate of capacity 1KB of
stack or non-stack cache is equal to the summation of hit rate

of 1,2,4 and 8-way associativity divided by four.

The first category, in purple color, represents the
benchmarks that have biased accesses to either stack or non-
stack cache. As one can observe from that category, the first
two benchmarks, which are dijikstra and compress95, have a
majority of accesses to non-stack cache, while the last
benchmark (sha) has the majority of accesses to stack cache.
For the accuracy of non-stack cache in this first category, we
see that increasing the size of non-stack cache a slightly
improves the hit rate. However, for stack cache, the hit ratio is
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significantly high and increasing its size doesn’t really matter
as much as to non-stack cache even though the majority of
accesses are directed to stack cache as the case of sha
benchmark.

The second category, in blue color, represents the
benchmarks that have almost 70% of accesses to non-stack
cache and approximately 30% of accesses to stack cache. We
still observe almost the similar behavior of the first category.
The non-stack cache is sensitive to the size while the stack
cache is not.

The last category, in green color, represents a case of
having approximately half of accesses to non-stack cache and
the other half to stack cache. Our observations for the previous
two categories remain true for this category as well.

We computed the average hit rate of each size (1KB, 2KB
and 4KB) for all benchmarks of both stack and non-stack
cache as reported in the last raw of Table 1. Based on that
computation, we would conclude that the optimal size for the
stack cache that provides 99% of accuracy is 2KB as shown in
Table I. However, For Non-stack cache, we expect to obtain a
higher hit rate with the large size of cache.

Since we want to get more precise estimate of the optimal
size of stack cache, we ran a quicksort benchmark that has
extremely accesses to stack cache. We ran a quicksort on array
of size 1000 elements, 16000 elements, 128000 elements and
1280000 elements. Table II shows the accuracy of different
sizes of stack and non-stack cache when we ran the quicksort
benchmark for different array sizes.

It is clearly seen from Table II that the majority of the
accesses are to stack cache and the hit rate of stack cache is
significantly high even with over 99% of accesses classified as
stack accesses. Also, with this high percentage of accesses to
stack cache, the size of 2KB of stack cache provides almost
the same hit rate of size 4KB. We fairly could say that the
difference between the hit rate of size 2KB and 4KB of stack
cache is a negligible amount. This observation confirms our
previous conclusion that the optimal size of stack cache that
provides, on average, more than 99% of accuracy is 2KB.

Another source of evidence about our observation
indicating 2KB is the efficient size of stack cache is shown in
both Table I and Fig. 1. From Table I, we see the majority of
accesses in case of sha algorithm are biased to stack cache.
86% of accesses are to stack cache while 14% of accesses are
to non-stack cache. Hence, the hit rate of stack cache most
likely determines the overall hit rate of non-unified cache
architecture. From Fig. 1, in case of sha algorithm as well, it is
evident from the result that the hit rate of non-unified cache
architecture with size 2KB of stack cache is identical, in case
of 2-way,4-way and 8-way, with the hit rate of size 8KB of the
unified cache architecture. Implying that increasing the size of
cache beyond 2KB for an application that has a majority of
accesses to stack cache would not beneficial for getting higher
hit rate.

Fig. 5 illustrates the hit rate of stack cache for different
associativity. It is apparent that in the majority of benchmarks,
direct-mapped (1-way associativity) is a suitable organization
for stack cache and that is understandable since the stack data

in some sense is located in contiguous locations in memory.
For the case of perl and sha benchmarks, it seems that 2-way
associativity is more adequate, however, the percentage
improvement is negligible. In gcc benchmark, it is noticeably
that increasing associativity beyond 1-way would improve the
hit rate of stack cache. Nevertheless, we would conclude that
1-way is sufficient associativity for stack cache since it shows
that increasing associativity more than 1-way is not beneficial
for most of the benchmarks.

C.Cost Effectiveness of Adding Stack Cache at Level 1

In the previous sections, the data cache of unified cache
architecture was split into two caches; stack and non-stack
cache. The total size of two caches was limited to be not more
than the size of data cache in unified-cache design. In this
section, however, one more cache was added to the data cache
instead. So it is similar to the non-unified cache architecture
but in this case the size of stack cache is fixed and the total
size of two caches is not limited to be the same size of level 1
data cache in unified-cache architecture. Since we have proven
small size of stack cache would provide high accuracy, the
cache added was small and acts as the stack cache. It
maintains only the data that retrieved from the stack segment.
In this experiment, only 1KB of stack cache was added and
hence, the total capacity of level one cache is equal to the size
of data cache plus 1KB of stack cache.

Since Rijndael (AES) benchmark shows the case of having
almost 50% of memory accesses distributed among stack and
non-stack segment, we decided to use Rijndael encryption
algorithm as a case study for analyzing the cost effectiveness
of adding small, fixed, size of stack cache to the data cache at
level 1.

In Fig. 6, we compare the hit rate of level 1 data cache of
unified cache architecture with the hit rate when adding 1KB
of stack cache to the unified cache design. For different sizes
of data cache varies from 4KB to 32KB, the result shows that
small investment such as adding 1KB of stack cache improves
the hit rate consistently.

From Fig. 6 (a), we see a noticeable improvement in hit rate
when adding 1KB of stack cache at level 1. We think that it is
often caused by the amount of data that needs to be processed
is larger than the size of data cache. In this case, the
improvement in hit ratio is about 3.9% on average of different
associativity. This improvement we obtained strongly suggests
that the investment of adding small size of stack cache to level
1 would considerably improve the hit rate. In case of data
cache with capacity of 32KB, the cost of adding 1KB of stack
cache is about 3%, which is very small. So, if the workload set
is larger than the data cache of capacity 32KB, this small
investment (3%) could be more beneficial for increasing the
hit rate.

VI. CONCLUSION AND FUTURE WORK

The stack segment is used to store dynamic variables with
other certain information when function is called. In prior
work, stack data and non-stack data are cached together;
leading a possibility of an increase in conflict miss in data
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cache. Treating stack data differently from non-stack data may
prevent expulsion non-stack data from the data cache. In this
study, we simulated non-unified cache architecture to keep
stack data separate from non-stack data. Then, we examined
the acceptable size and associativity for stack cache to achieve
high hit ratio even with over 99% of memory accesses
directed to stack cache. In addition, we analyzed the cost
effectiveness of adding small size of stack cache at level 1 in
unified cache design.

We observed that the overall hit rate of non-unified cache
design was sensitive to the size of non-stack cache. Also, our
results provide compelling evidence that the acceptable size
and associativity for stack cache that provide, on average,
more than 99% of accuracy is 2KB and 1-way associativity
even with over 99% of memory accesses directed to stack
cache. Furthermore, our result shows that adding 1KB of stack
cache to unified cache design improves the overall hit rate by
approximately, on average, 3.9% for Rijndael algorithm. A
further observation about stack cache can be made for shared
memory multiprocessor systems.
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