
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

476

 

 

  
Abstract—Software maintenance is extremely important activity 

in software development life cycle. It involves a lot of human efforts, 
cost and time. Software maintenance may be further subdivided into 
different activities such as fault prediction, fault detection, fault 
prevention, fault correction etc. This topic has gained substantial 
attention due to sophisticated and complex applications, commercial 
hardware, clustered architecture and artificial intelligence. In this 
paper we surveyed the work done in the field of software 
maintenance. Software fault prediction has been studied in context of 
fault prone modules, self healing systems, developer information, 
maintenance models etc. Still a lot of things like modeling and 
weightage of impact of different kind of faults in the various types of 
software systems need to be explored in the field of fault severity.      
 

Keywords—Fault prediction, Software Maintenance, Automated 
Fault Prediction, and Failure Mode Analysis.  

I. INTRODUCTION 
OFTWARE maintenance has gained immense importance 
and attracted a number of research scholars because it 

involves a huge amount of cost and efforts for any software 
system. System testing and fault detection has become most 
important process in software life cycle. Various fault 
prediction models may be analyzed and proposed so that fault 
may be detected at an early stage and lot of testing efforts can 
be saved thereof. Early detection of faults may be 
implemented by various methods such as: Using Developers 
Information, Defect Tracking System, Self Healing System, 
Multivariate Analysis, Fault Injection etc.  

II. LITERATURE SURVEY 
According to Lyu in [1], system architectures based on a 

cluster of computers have gained substantial attention in 
recent years. In such a system, complex software, hardware, 
operating systems, and application software need to be 
integrated for high system availability and data integrity. The 
performance and cost of the system can be greatly reduced by 
the use of separate error detection hardware and dedicated 
software fault tolerance methods. The application software 
 

Neeraj Mohan is working as Assistant Professor in Deptt. Of Computer 
Science & Engg. Rayat & Bahra Institute of Engineering & Bio-Technology, 
Sahauran, Distt. Mohali (Punjab)-140104 INDIA 

Dr. Parvinder S. Sandhu is Professor with Computer Science & 
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA 

Dr. Hardeep Singh is working as Professor with Computer Science & 
Engineering Department, Guru Nanak Dev University, Amritsar, India. 

may be used for the error detection, subsequent recovery 
actions and data backup. The application can be made as 
reliable as the user requires, being constrained only by the 
upper bounds on reliability imposed by the clustered 
architecture under various implementation schemes. 
Reliability modeling and analysis of the clustered system is 
presented by defining the hardware, operating system, and 
application software reliability techniques that need to be 
implemented to achieve different levels of reliability and 
comparable degrees of data consistency. According to [1], 
Markov reliability model may be used to capture these faults 
and subsequent recovery routines. It is also demonstrate how 
this cost-effective fault tolerant technique can provide 
quantitative reliability improvement within applications using 
clustered architectures. 

 Ostrand et al discusses in [2] that in a large software 
system some files that make the system particularly likely to 
contain faults are identified. Then a statistical model is 
developed that uses historical fault information and file 
characteristics to predict which files of a system are likely to 
contain the largest numbers of faults. In that method tester 
may easily detect the maximum number of faults without 
wasting much time. Automated tool may be produced that 
mines the projects defect tracking system. It can be used by 
testers without requiring any particular statistical expertise or 
subjective judgments. In that approach, system tester is major 
entity for fault detection [2]. 

Erdil describes in [3] that software development includes 
Requirements Engineering, Architecting, Design, 
Implementation, Testing, Software Deployment, and 
Maintenance phases. Maintenance is the last stage of the 
software life cycle. There are four major problems that can 
effect the maintenance process: unstructured code, 
maintenance programmers having insufficient knowledge of 
the system, improper documentation and software 
maintenance having a bad image. Maintenance process 
consists of four different parts:- Corrective maintenance that 
deals with fixing bugs in the code, Adaptive maintenance that 
deals with adapting the software to new environments, 
Perfective maintenance that deals with updating the software 
according to changes in user  requirements and preventive 
maintenance that deals with updating documentation and 
making the software more maintainable. Maintenance process 
involves a lot of efforts in terms of developers time and 
development cost [3]. 

In [4] some improvements are proposed in the software 

Impact of Faults in Different Software Systems: 
A Survey 

Neeraj Mohan, Parvinder S. Sandhu, and Hardeep Singh 

S 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

477

 

 

maintenance standards in paper. A new maintenance maturity 
model is proposed for software maintenance activities. This 
new model preserves a structure similar to that of the CMMI 
maturity model. It is based upon programmers experience, 
international standards and the literature available on software 
maintenance. Scope and architecture of the model is 
presented. The managerial problem of software maintenance 
is more dominant as compared to technical problems [4]. 

 In a competitive world of fast paced software development, 
managers need to optimize the usage of their limited resources 
to deliver quality products in a strict time limit and allotted 
budget. In paper [5], an approach (The Top Ten List) which 
highlights to managers the ten most susceptible subsystems 
(directories) to have a fault is presented. To validate this work, 
this approach is applied to six large open source projects 
(three operating systems: NetBSD, FreeBSD, OpenBSD; a 
window manager: KDE; an office productivity suite: KOffice; 
and a database management system: Postgres). 

According to Wilfredo Torres-Pomales [6], it is not 
possible to produce software without errors. The main cause 
of software design errors is the complexity of the systems. A 
brief overview of the software development processes, made 
by the paper, shows that it is hard-to-detect design faults. 
Faults are likely to be introduced during development phase. 
Component reliability is an important quality measure for 
system level analysis, software reliability is hard to 
characterize and the use of post-verification reliability 
estimates remains a controversial issue. Software safety and 
software reliability are two different issues, the comparative 
importance of these issues depends upon the nature of 
application. Multi-version techniques are based on the 
assumption that software built differently should fail 
differently. It indicates that if one of the redundant versions 
fails, at least one of the others should provide an acceptable 
output [6]. 

An attempt is made to make fully automated fault 
prediction systems that do not require any statistical expertise 
for user in fault prediction in [7]. Developer information is 
used for fault prediction. To make predictions a number of 
different characteristics and change history of project is 
considered. This information considerably increases the 
quality of next release of any software system [7]. 

According to Ohlsson in [8], software quality can be 
improved considerably if fault-prone modules can be detected 
at an early stage. The primary goal of the research by Ohlsson 
was to develop and refine techniques for early prediction of 
fault-prone modules. Before this work principal component 
analysis (PCA) and discriminant analysis (DA) approaches 
were used for building prediction models for faulty modules. 
Instead of dividing modules into fault-prone and non-fault-
prone, the modules are categorized into several groups 
according to the ordered number of faults. 

In [9] it is described that software fault detection and fault 
correction processes are two different processes. But these are 
related together. These are supposed to be studied together. A 
practical approach is to apply software reliability growth 

models to model fault detection, and fault correction process 
is assumed to be a delayed process. According to [9], in the 
artificial neural networks model, as a data-driven approach, 
tries to model these two processes together with no 
assumptions. 

Houten explained in [10] that it is not feasible to build 
digital product models for maintenance purposes only. But if 
any digital product model is available, it may be used to 
support many maintenance-related activities which are very 
important in software life cycle. Some examples are: Product 
life cycle simulation, deterioration analysis, Failure Mode 
Effect Analysis (FMEA), failure diagnosis, maintenance 
ergonomic analysis etc. At the University of Tokyo, a Virtual 
Maintenance System has been developed to support some of 
the activities mentioned above. So, in future, CAD systems 
may be used to support product life cycle issues right from the 
start of the design process [10]. 

Catal elaborates in [11] that software testing is a time-
consuming and expensive process. Quality expectations of 
software system are increasing in strict time limits. Software 
fault prediction models gives answer to such problems. These 
models can reduce the testing duration, project risks, resource 
and infrastructure costs. In this study, a novel fault prediction 
model is proposed to improve the testing process. This model 
provides a test strategy by focusing on fault-prone modules 
only. The goal is to predict the classes that will contain 
maximum faults in an Object-Oriented System. It will 
improve the next release of software system considerably [11]. 

There are several research papers that attempt to predict risk 
and fault prediction by analyzing the source code and 
applying a quantitative model. The accuracy of these models 
is significantly enhanced if process data is included in the 
development of the quantitative model for risk analysis. 

Process Data may include the data that is gathered in and by 
the problem tracking system and the configuration 
management system. It is likely to include things like: 

•  Number of changes since last release 
•  Number of faults found since last release 
•  Number of different developers who turned over 
   versions of this module since last release 
•  Number of features that were added that affected 
   this module 
Process data may also include things like experience levels 

of the developers, the amount of time that the module spent in 
review, the number of defects found in reviews, the number of 
test cases (and unique test cases) run that touched the module 
[12]. 

The problem of increasing software maintenance costs is 
addressed in [13]. A stochastic decision model is developed 
for the maintenance of information systems. Based on this 
modeling framework, optimal decision rule is derived for 
software systems maintenance. It also presents sensitivity 
analysis of the optimal policy. This model is applied to a large 
telecommunications switching software system. This 
modeling framework also allows for computing the expected 
time to perform major upgrade to software systems [13]. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

478

 

 

According to Li et al [14], the high cost of the federated 
structure, traditionally used in avionics systems, has led 
avionics systems suppliers to search for alternatives. The 
Integrated Modular Avionics (IMA) structure is an option 
because of its ability to share common hardware and software. 
However, sharing such resources results in new safety 
challenges—the complexity caused by sharing common 
hardware and software requires more complete and rigorous 
safety analysis. In this paper, a model-based fault-analysis 
technique for IMA systems is presented. The model 
accommodates multi-valued logic to handle the uncertainty of 
fault propagation inside an IMA system. An algorithm is also 
presented for fault propagation and root-cause analysis of 
IMA systems, based on this model. A visual-analysis tool is 
also presented that automatically performs fault-analysis tasks 
based on this model and algorithm [14].  

The [15] presents a generic modeling framework to 
facilitate the development of self-healing software systems. A 
self-healing software system is capable of detecting the 
wrongs and it knows how to correct them. A model-based 
approach is used to categorize software failures into different 
categories. According to [15], self-healing is then achieved by 
transforming the model of the system into platform specific 
implementation instrumented with failure detection. 

Hoffmann explains in [16] that the availability of software 
systems can be increased by preventive measures which are 
triggered by failure prediction mechanisms. In the paper two 
non-parametric techniques are employed which model and 
predict the occurrence of failures as a function of discrete and 
continuous measurements of system variables. Two modeling 
approaches: an extended Markov chain model and a function 
approximation technique utilizing universal basis functions 
(UBF) are employed. The presented modeling methods are 
data driven rather than analytical and can handle large 
amounts of variables and data. Both modeling techniques are 
applied to real data of a commercial telecommunication 
platform. The data includes event-based log files and time 
continuously measured system states. Results are presented in 
terms of precision, recall, F-Measure and cumulative cost. By 
using the presented modeling techniques the software 
availability may be improved by an order of magnitude [16]. 

Dependability modeling and evaluation (encompassing 
reliability and safety issues) of the two major fault tolerance 
software approaches-recovery blocks (RBs) and N-version 
programming (NVP)-are presented in [17]. The study is based 
on the detailed analysis of software fault-tolerance 
architectures able to tolerate a single fault. For each approach 
a detailed model based on the software production process is 
established and then simplified by assuming that only a single 
fault type may manifest during execution of the fault-tolerant 
software and that no error compensation may take place 
within the software. The analytical results obtained make it 
possible to identify the improvement, compared to a non-fault-
tolerant software, that could result from the use of RB and 
NVP and to determine the most critical types of related faults 
[17]. 

In paper [18], the different predictor models are applied to 
NASA five public domain defect datasets coded in C, C++, 
Java and Perl programming languages. Twenty one software 
metrics of different datasets and Java Classes of thirty five 
algorithms belonging to the different learner categories of the 
WEKA project have been evaluated for the prediction of 
maintenance faults and severity. The results of validation are 
recorded in terms of Accuracy, Mean Absolute Error (MAE) 
and Root Mean Squared Error (RMSE) for different project 
datasets [18]. 

In the survey performed in [19], the results about software 
faults encountered during the testing phase of a large real-time 
system are elaborated. The survey was conducted in two parts: 
the first part surveyed all the faults that were reported and 
characterized them in terms of general categories; the second 
part resurveyed in depth the faults found in the design and 
coding phases. These faults are analyzed and characterized so 
that these can be prevented in future [19]. 

According to Randell [20], any individuals and 
organizations as well have become dependent on computer 
based systems. So, there has been an ever-growing amount of 
research to improve the dependability of these computer based 
systems. In particular there has been much work on trying to 
gain maximum understanding of the various types of faults 
that need to be prevented, tolerated or corrected in order to 
reduce the probability and severity of system failures. In this 
regard various assumptions are to be considered such as faults 
prediction, fault tolerance and identification of faulty modules. 

III. CONCLUSION 
It is concluded from the above discussion that a lot work is 

going on in the field of software maintenance. Various fault 
prediction techniques and prediction models are explored to 
minimize the testing efforts. Enough research work has been 
done and going on in the field of software maintenance and 
early fault prediction. Still a lot of things like modeling and 
weightage of impact of different kind of faults in the various 
types of software systems need to be explored in the field of 
fault severity. 

REFERENCES   
[1] Michael R. Lyu and Veena B. Mendiratta, "Software Fault Tolerance in 

a Clustered Architecture:Techniques and Reliability Modeling", 
Proceeding of IEEE Aerospace Conference, 1999. Volume 5, 1999, pp. 
141 - 150. 

[2] Thomas J. Ostrand and Elaine J. Weyuker, "A Tool for Mining Defect-
Tracking Systems to Predict Fault-Prone Files", 1st international 
workshop on mining software repositories, 2005, pp. 85-89.   

[3] Kagan Erdil, Emily Finn, Kevin Keating, Jay Meattle, Sunyoung Park 
and Deborah Yoon: "Software Maintenance As Part of the Software Life 
Cycle" Comp180: Software Engineering Project, December 16, 2003 

[4] Alain April1, Jane Huffman Hayes and  Reiner Dumke, "Software 
Maintenance Maturity Model (SMmm):The software maintenance 
process model", Journal of Software Maintenance 17(3), 2005, pp. 197-
223. 

[5]  Ahmed E. Hassan and Richard C. Holt, The Top Ten List: Dynamic 
Fault Prediction, Proceedings of ICSM 2005: International Conference 
on Software Maintenance, Budapest, Hungary, Sept 25-30, 2005. 

[6] Wilfredo Torres-Pomales, Software Fault Tolerance: A Tutorial , 
october-2000, URL: citeseer.ist.psu.edu/385206.html. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

479

 

 

[7] Elaine J. Weyuker, Thomas J. Ostrand and Robert M. Bell, "Using 
Developer Information as a Factor for Fault Prediction", International 
Conference on Software Engineering, Proceedings of the Third 
International Workshop on Predictor Models in Software Engineering,  
2007, pp. 8-18. 

[8] Niclas Ohlsson, Ming Zhao and Mary Helander, "Application of 
multivariate analysis for software fault prediction",  Journal of Software 
Quality Control, Volume 7 ,  Issue 1, 1998, pp. 51 - 66. 

[9] Q.P. Hu, M. Xie and G. Levitin, "Robust recurrent neural network 
modeling for software fault detection and correction prediction", 
Reliability Engineering and System Safety, 92, no. 3, 2007, pp. 332-340. 

[10] F.J.A.M. van Houten and F. Kimura, "The Virtual Maintenance System: 
A Computer-Based Support Tool for Robust Design, Product 
Monitoring, Fault Diagnosis and Maintenance, Annals of CIRP, vol. 
No.1, 2000, pp.91-94. 

[11] Cagatay Catal and Banu Diri, "Software Fault Prediction with Object-
Oriented Metrics Based Artificial Immune Recognition System", 
PROFES 2007, LNCS 4589,2007,  pp. 300–314 

[12] Greg Kaszycki, "Using Process Metrics to Enhance Software Fault 
Prediction Models", The 10th symposium on Software Reliability 
Engineering ( ISSRE 1999), Boca Raton, Florida, Nov. 1-4, 1999. 

[13] Krishnan, M.S., Mukhopadhyay, Tridas, Kriebel and Charles H., "A 
decision model for software maintenance" Information Systems 
Research, Vol. 15, No. 4, December 2004, pp. 396-412. 

[14] Wanchun Li, Heena Macwan and Mary Jean Harrold, "Model-based 
Fault Analysis for Avionics Systems", 1st International Workshop on 
Aerospace Software Engineering (AeroSE 07),May 21-22, 2007, 
Minneapolis, USA. 

[15] Michael Jiang, Jing Zhang, David Raymer and John Strassner, " A Case 
Study: A Model-Based Approach to Retrofit a Network Fault 
Management System with Self-Healing Functionality, ECBS 2008, pp. 
9-18.  

[16] Günther A. Hoffmann, Felix Salfner, Miroslaw Malek, "Advanced 
Failure Prediction in Complex Software Systems", Advanced Failure 
Prediction in Complex Software Systems,  April 2004 

[17] Arlat, J.   Kanoun, K.   Laprie, J.-C, "Dependability modeling and 
evaluation of software fault-tolerant systems", IEEE Transactions on 
Computers,Volume 39 ,  Issue 4,1990, pp. 504 - 513.    

[18] Parvinder Singh Sandhu, Sunil Kumar and Hardeep Singh, "Intelligence 
System for Software Maintenance Severity Prediction", Journal of 
Computer Science, 3 (5), 2007,  pp. 281-288. 

[19] Dewayne E. Perry and Carol S. Stieg, "Software Faults in Evolving a 
Large, Real-Time System: a Case Study", In 4th European Software 
Engineering Conference ESEC93,1993, pp. 48-67. 

[20] Brian Randell, "Facing Up to Faults", The Computer Journal, Vol. 43, 
January 31, 2000. 

 
 


