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 
Abstract—Multipotent mesenchymal stromal cells (MSCs) 

possess immunomodulatory properties. The effect of MSCs on the 
crucial cellular immunity compartment – T-cells is of a special 
interest. It is known that MSC tissue niche and expected milieu of 
their interaction with T- cells are characterized by low oxygen 
concentration, whereas the in vitro experiments usually are carried 
out at a much higher ambient oxygen (20%). We firstly evaluated 
immunomodulatory effects of MSCs on T-cells at tissue-related 
oxygen (5%) after interaction implied cell-to-cell contacts and 
paracrine factors only. It turned out that MSCs under reduced oxygen 
can effectively suppress the activation and proliferation of PHA-
stimulated T-cells and can provoke decrease in the production of 
proinflammatory and increase in anti-inflammatory cytokines. In 
hypoxia some effects were amplified (inhibition of proliferation, anti-
inflammatory cytokine profile shift). This impact was more evident 
after direct cell-to-cell interaction; lack of intercellular contacts could 
revoke the potentiating effect of hypoxia. 
 

Keywords—Cell-to-cell interaction, low oxygen, MSC 
immunosuppression, T-cells. 

I. INTRODUCTION 

SCs possess immunomodulatory properties that are 
currently actively studied. It is shown that in vitro-

derived stromal progenitors affect virtually all types of 
immune cells. MSC suppressive effect is manifested in 
inhibition of immune cells activation, proliferation, cytokine 
production, and others [1]-[3]. The effect of MSCs on T 
lymphocytes is of special interest because these cells play an 
important role in the adaptive immune response and are 
directly involved in the development of graft-versus-host 
disease. In most papers the suppression of T-cell immune 
response after interaction with MSCs had been described, but 
the effect appeared in different extent depending on the 
experimental conditions. MSC effect on T-cells is determined 
by many factors: the MSC/T-lymphocyte ratio, time of 
interaction, T-cell activation inducers, the presence/absence of 
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direct cell-to-cell contact, microenvironment and other [1], 
[4], [5]. The oxygen concentration in local microenvironment, 
where the interaction occurs is an important parameter which 
remains virtually unexplored at the moment. In standard 
laboratory practice the experiments are carried out at the 
ambient O2 in CO2 incubators, although MSC tissue niche and 
implied foci of MSC-T-cell interaction in tissues are 
characterized by reduced oxygen concentration - 2-7% [6]. 
Besides it is shown that in vitro hypoxia significantly modifies 
the properties as MSCs [7]-[10], and lymphocytes [11], [12]. 
In particular, the significant changes in secretion of MSC 
paracrine factors have been described under hypoxic 
conditions [13], [14]. Many of which are actively involved in 
the implementation of immunosuppression. Therefore it is 
logic to suggest that immunomodulatory properties of MSCs 
under hypoxic conditions may change. We have performed a 
comparative evaluation of the immunomodulatory effects of 
MSCs on T-cells via direct interaction and paracrine mediators 
at the ambient O2 and at the tissue-related “hypoxic” 
conditions (5% O2).  

II.  MATERIALS AND METHODS 

A.  Isolation and Culture of Cells 

MSCs were isolated from the stromal-vascular fraction of 
human adipose tissue by the method of Zuk et al. [15] in the 
modification of Buravkova et al. [7]. Immediately after 
isolation the one part of the cells were placed in a CO2 
incubator with atmospheric oxygen concentration (5% CO2 + 
95% air (20% O2), 37°C, 100% humidity), the other part – 
into Multigas CO2-incubator Sanyo (Japan), where the 
concentration of 5% O2 was maintained. MSCs were cultured 
in essential α-MEM with 10% fetal bovine serum (FBS, 
HyClone, USA), 2 mM L-glutamine (Gibco, USA), and 1% 
penicillin/streptomycin (Gibco, USA) and were passaged after 
reaching 70 - 80% of the confluence. 

Mononuclear cells were isolated from peripheral blood of 
healthy volunteers by density gradient (ρ = 1,077, Histopaque-
1077, Sigma-Aldrich, USA) according to manufacturer's 
instructions.  

For each donor immune profile was determined by flow 
cytometry (Epics XL, Beckman Coulter, USA) using 
antibodies CD45-FITC/CD14-PE, CD3-FITC/CD19-PE, CD3-
FITC/CD4-PE, CD3-FITC/CD8-PE, CD3-FITC/16+56-PE, 
(Immunotec, France) as a negative control IgG-PE/IgG-FITC 
(Immunotec, France). Isolation of CD3+ cell population by 
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magnetic separation was performed on the magnetic column 
according to the manufacturer’s procedure (Miltenyi Biotec, 
Germany). The isolated cells were cultured in RPMI 1640 
medium (Gibco, USA) (2 mM L-, 1% 
penicillin/streptomycin), 5% heat-inactivated FBS. For T-cells 
activation phytohaemagglutinin (PHA, Sigma, USA) at a final 
concentration of 10 µg/ml was added into the culture medium. 

B. MSC and T-Cell Coculture 

T-lymphocytes were added to MSCs constantly cultured at 
20 or 5% O2, up to 70-80% of confluence. Then cells were 
cocultured for 72 hours in RPMI 1640 with PHA. Coculture of 
MSCs and T-cells was performed in two versions: the contact 
interaction ("monolayer") and noncontact ("transwell"). In the 
"monolayer" T-cells were added directly to the MSCs. To 
exclude cell contact, MSCs and T-cells were separated by a 
semipermeable membrane-insert "transwell" (0.4 micron pore 
diameter) (Costar, USA). Inserts with PHA-activated T-cells 
were placed over the monolayer MSCs in six-well plates. 

The ratio of MSCs/T-lymphocytes in all experiments was 
about 1:10. Each experiment was reproduced 3-4 times.  

C. T-Cell Assay 

Using the flow cytometry (EPICS XL, Beckman Coulter; 
FACS Calibur, Becton Diskinson, USA) the following 
parameters were determined: viability of T-cells by using 
AnnexinV-FITC/PI kit (Immunotec (France); activation of T-
cells by staining with antibodies against CD3, CD69, 
CD3/HLA-DR, CD3/CD25. FITC-labeled and PE, IgG 
(Immunotec (France) as isotype controls were used; the 
proliferative activity of T-cells using 5,6- carboxyfluorescein 
succinimidyl ester (CFSE, Invitrogen, USA) - intracellular 
covalently binding dye. T-lymphocytes were stained with 
CFSE (5 mM / mL) according standard technique (Suva D. et 
al., 2007), then the cells were grown in monoculture or with 
MSCs; the cytokines in the culture medium were evaluated 
with FlowCytomix human Th1/Th2 11 Plex (Bender 
MedSystems, Austria). 

D. Statistical Methods 

Statistical data processing was performed using the 
software package «Statistica 8.0». Significant differences were 
assessed using the Mann-Whitney test. Differences were 
considered significant at p <0.05 (*).The mean value and  its 
standard deviation were calculated using Microsoft Excel. 

III. RESULTS 

A. Viability 

After three days of culture, the share of alive T- 
lymphocytes in monoculture was averaged about 60% and did 
not depend on the oxygen concentration. In direct interaction 
under 5% O2 MSCs maintained the viability of T-lymphocytes 
(it was 10% higher, than in T-cell monoculture, p<0,05), in the 
absence of cell contacts such effect was not found, the 
viability of T-cells remained at the control level (Table I). 

 
 
 

TABLE I 
VIABILITY OF T-CELLS AFTER INTERACTION WITH MSCS 

 Share of viability T-cells, % 

Culture condition 20% О2 5% О2 

T-cell monoculture 59,2±1,9 54,8±4,5 

"Monolayer" 60,3±2,4 67,1±5,2 * 

"Transwell" 64,0±1,9 62,9±0,7 

* - significant difference (p<0,05) from T-cells in monoculture 

B. Activation 

The substantial alteration of T-cell activation was found out 
after interaction with the MSCs. Early T-lymphocyte 
activation was enhanced. The share of CD3+/CD25 + cells was 
increased in “monolayer” (p<0.05). The share of CD3+/CD69+ 
cells was higher twice on average (p<0.05). In “transwell” the 
effect was weaker (Fig. 1). Thus, the activation gain was not 
dependent on the O2 concentration, but was more pronounced 
in the presence of cell-to-cell contacts. 

On the contrary, the share of T-cells bearing HLA-DR 
marker of late activation was decreased. In “monolayer” the 
decline was 50% on average, and was the same at 20 and at 
5% O2. In the absence of direct cell-to-cell contact the effect 
was depend on the O2 concentration, in “transwell” this effect 
in hypoxia was weakened (p<0.05), the difference was 
significant (Fig. 1). 

C. Proliferation 

MSCs possessed pronounced anti-proliferative effect. 
Under ambient O2 the portion of dividing T-lymphocytes was 
decreased down to 30% on average. The effect did not depend 
on O2 level. In “monolayer’ reduced O2 potentiated this effect 
- reduction reached 50% (Fig. 2).  

D. The Cytokine Production 

After 72 hours in T-cell monoculture, the concentration of 
IL-8 in conditioning medium (CM) was the same at 5 and at 
20% O2. IL-10 and IL-8 production was changed depending 
on the O2 level and was significantly higher in hypoxia (Fig. 
3).  

After interaction with MSCs the secretion of pro-and anti-
inflammatory cytokines changed. Given that hypoxia affected 
significantly the secretion of paracrine factors and their 
concentration in the CM varied depending on the donor, 
cytokine changes were assessed as change from of control - 
PHA T-lymphocytes monoculture. The concentration of 
cytokine in the T-lymphocyte CM was taken as 100% (Fig. 4). 
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with certainty may be extrapolated to the situation in vivo. 
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