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Abstract—This paper presents a new high speed simulation 

methodology to solve the long simulation time problem of CMOS 
image sensor matrix. Generally, for integrating the pixel matrix in 
SOC and simulating the system performance, designers try to model 
the pixel in various modeling languages such as VHDL-AMS, 
SystemC or Matlab. We introduce a new alternative method based on 
spice model in cadence design platform to achieve accuracy and 
reduce simulation time. The simulation results indicate that the pixel 
output voltage maximum error is at 0.7812% and time consumption 
reduces from 2.2 days to 13 minutes achieving about 240X speed-up 
for the 256x256 pixel matrix. 
 

Keywords—CMOS image sensor, high speed simulation, image 
sensor matrix simulation.  

I. INTRODUCTION 
S reviewed by E. R. Fossum and M. Bigas in the papers 
[1] [2], owing to its linear output response of the incident 

light intensity, the 3T-APS is the popular and basic pixel 
architecture in image sensors. A spice model has been 
reported by T. Reiner [3] studied mainly on the capacitance on 
the sensitive node and pixel transfer function. A detailed 
analysis has been given by A.El Gamal [4] on sensor dynamic 
range, system SNR, and several methods for improving the 
DR. The APS and PPS pixel has been modeled in VHDL-
AMS in order to predict the chip behavior before the 
fabrication [5], but we can find that this model is not able to 
be as accurate as the spice model and did not take the noise 
and parasitic capacitor into account. Another APS VHDL 
model take the sense node nonlinearity into consideration and 
with the other functional block, but it suffers from internal 
errors when the imager matrix size becomes too big, the 
simulation time consumption is also an unavoidable problem 
[6]. The spice simulator based on numerical analysis, such as 
Spectre, Hspice, solves the circuit equation by iterative 
method, such as Newton’s method, Newton-Raphson method. 
To be specific, for the imager resolution 256x256, the tool has 
to solve equations with respect to 196608 mosfet transistors 
and 65536 photodiodes suppose that the pixel is a 3T-APS. 
For simulating the whole sensor matrix, the simulator has to 
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solve 130K equations [10]. For solving this big time and 
calculation consumption problem, we propose a high level 
simulation in Cadence design platform to simulate the imager 
on matrix level and check the sensor matrix performance in 
early stages of design time. 

We introduce the image sensor pixel models and basic 
signal processing procedure in the section II. In section III, we 
will discuss the fast simulation method and present a 
comparison result. Finally, in section IV we conclude and 
provide the future perspectives. 

II.  IMAGE SENSOR MODEL AND SIGNAL ANALYSIS 
As shown in Fig 1, the 3T-APS consists of three NMOS 

transistors and a photodiode. Typical signal readout procedure 
can be roughly divided into three phases, such as reset, 
integration and readout. During the reset operation, the sense 
node full well capacitor Cpd which comprise the photodiode 
inner capacitor, reset transistor MN1 source capacitor, and the 
MN2 gate parasitic capacitor will be reset to a voltage Vpd. 
The charges will be accumulated on the sense nodes and it can 
gain maximum charge Qmax which depends on the full well 
capacitance of the photodiode. After resetting, the capacitor 
Cpd will be discharged by the photocurrent (Iph) and dark 
current (Idark), the former is proportional to the light intensity 
during the integration time and Idark is the leakage current 
flowing through the photodiode when no photons enter the 
image pixel, the main part of the total dark current is coming 
from the depletion of the photodiode edge at the surface [7]. 
As shown in Fig 2, the slope of discharge curve is determined 
by the sum of Iph and Idark and it also determine by the Cpd. The 
bigger the Iph is, the faster the Cpd discharges. For example, 
using three different light intensities as input to the simulation 
produces three different Iph giving three discharge curves with 
different slopes, as shown in Fig 2. Meanwhile, the discharge 
voltage is buffered by inner source follower MN2. The access 
transistor MN3 passes this voltage to column bus according to 
the readout timing. The column voltage will be sampled twice 
by the Correlated Double Sampling (CDS) circuit, which is 
used to reduce reset noise and fixed pattern noise [8]. The first 
sample happens in the reset period and the second sample 
happens during integration. The final output voltage can be 
expressed by equation (1):  

 
                       SCDSHCDSOS VVV −− −=                       (1) 

 
where, VCDS_H is the output voltage in reset phase and VCDS_S 
is the output voltage sampled during the integration. The 
differential voltage Vos is the final signal passed to Analog to 
Digital converter (ADC) for generating the image numeric 
data. 
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Fig. 1 3T-APS pixel model 

 
Fig. 2 Timing diagram of 3T-APS [3] 

III. HIGH SPEED SIMULATION METHOD AND 
IMPLEMENTATION 

The spice simulator is commonly used to simulate the 
circuit behavior. Imager matrix is built up from pixel blocks 
that are repeated thousands or millions of times. The number 
of the circuit element in such a matrix is too huge for the 
common spice simulator. The reason why the Spectre 
simulator suffers from memory and runtime problem for huge 
pixel matrix is that the nets and terminals in the matrix form a 
very complicated equation with lots of variables according to 
Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law 
(KVL) principle. It costs lot of time to solve the equations and 
it consumes lot of memory to execute the calculation. 
Currently designers simulate pixel matrix in a very limited 
size, such as 10x10 or 20x20 before the fabrication owing to 
these difficulties. In order to give high level performance 
estimation, we present our high level and high speed approach. 
The main idea in this work is to use one pixel instead of the 
whole matrix in the simulation with the help of the generated 
database to map the input photocurrent and output voltage. We 
use 3T-APS as a standard cell as shown in the Fig 3, in order 
to obtain an correlated output voltage database V[i][j] we 
perform a parametric simulation with the photocurrent 
parameter Iph[i][j] which is the input signal of the pixel with 
address row i and column j in the pixel matrix. In this way, we 
convert the photocurrent values to its correlated output voltage 
database and we form a Look Up Table (LUT) by these data 
shown as the blocks marked Iph[i][j] and V[i][j] in Fig 3. 

 
Fig. 3 Mapping and generated database 

 
Fig. 4 Pixel output voltage versus photocurrent 

 
An 8 bit depth grey level image with intensity data ranging 

from 0 to 255 is used to represent the output voltages. So we 
need 256 different output voltage stages from the lowest to the 
highest corresponding to numeric intensity data from 0 to 255 
and these voltage stages all relate to a specific photocurrent. 
The pixel simulation output voltage increasing linearly with 
the light intensity is shown in Fig 4. The output voltage curve 
implies that some pixel output voltage can be estimated before 
the simulation. Since we need 256 different output voltage 
stages, we divide the input photocurrents into 256 blocks and 
in turns we get a series of mean photocurrent of each block. 
We create an input table of these 256 mean values and we 
apply these 256 values in the simulation. Another table of 256 
output voltages is generated after the simulation as shown in 
table I. And then, a mapping function is used to match and set 
each pixel in the pixel matrix output voltage directly. 

 
TABLE I  

THE PHOTOCURRENT AND OUTPUT VOLTAGE 
Photocurrent (A) Output voltage (Volts) 

a: [Iph_00] Va:V00 
b: [Iph_01] Vb:V01 

c: [Iph_02] Vc:V02 

… … 
x y 

 
We assume that the photocurrent is a random unknown 

value as x and there is a threshold photocurrent in each range 
such as (a+b)/2 in region [a b]. As shown in Fig 4, since the 
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