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 
Abstract—Image segmentation process based on mathematical 

morphology has been studied in the paper. It has been established 
from the first principles of the morphological process, the entire 
segmentation is although a nonlinear signal processing task, the 
constituent wise, the intermediate steps are linear, bilinear and 
conformal transformation and they give rise to a non linear affect in a 
cumulative manner. 
 

Keywords—Image segmentation, linear transform, bilinear 
transform, conformal transform, mathematical morphology.  

I. INTRODUCTION 

MAGE segmentation [1]-[3] has been found to be an 
essential process for most subsequent processing like image 

analysis and understanding tasks such as image representation, 
description and object recognition, image visualization by the 
machines and object based image compression [4]-[8]. In 
general, segmentation related problems arise during 
partitioning of an image into a number of homogeneous 
segments (i.e. spatially connected groups of pixels) such that 
the union of any two neighboring segments can give a 
homogeneous segments. A large number of techniques and 
algorithms has been proposed and applied for image 
segmentation and out of them; a major portion belongs to 
hybrid algorithm [1]-[8]. Apart from this, noise reduction is an 
inherent problem for all types of image processing. 

Mathematical morphology is a non linear area of the signal 
processing and related to the application of set theory concept 
to image analysis. Morphology deals with the study of shapes 
and structures from a general techno-scientific point of view 
[16]-[27]. Various image processing operation can be 
implemented in spatial domain, few of them can be 
implemented in frequency domain. (mainly various filters) and 
most of them can be realize through morphological operation. 
Morphological filters or operators are non linear 
transformations [9]-[13] which either modify or tend to 
modify geometric features of images. All these operators 
transform the original image into another image through 
various iterations with other image of a certain shape and size 
which is called structuring elements [14], [15]. In present 
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study, attempt has been made to establish that all 
mathematical morphological operation may be thought of as a 
linear, bilinear transform or conformal transform. 

II. BASIC BINARY MORPHOLOGICAL OPERATIONS  

The basic operations involved in the morphological process 
are erosion and dilation. All other operation may be derived 
from these two basic operations which are associated with 
translation, reflection etc. 

A.  Erosion 

When A is the image under test and B is the structuring 
element and both are sets in Z2, the erosion of A by B denoted 
by AٚB is defined as 

 
ܣ ٚ ܤ ൌ ሼݖ|ሺܤሻ௭ ك  ሽ       (1)ܣ

 
Equation says that the erosion of A by B translated is 

contained in A. 

B. Dilation 

For binary images with A and B as sets in Z2, the dilation of 
A and B denoted AْB is defined as 

 

ܣ ْ ܤ ൌ ሼݖ|ሺܤ෠ሻ௭ܣځ ് Øሽ                    (2) 
 
The equation is based on reflecting B about in origin and 

shifting this reflection by Z. The dilation of image A by 
structuring element B is the set of all displacements. Based on 
the interpretation, equation can also be written by 

 

ܣ ْ ܤ ൌ ሼݖ|ሾሺܤ෠ሻ௭ܣځሿ ك  ሽ                     (3)ܣ

C. Opening and Closing 

The opening of set A by structuring element B, denoted 
A○B is defined as 

 
ܣ ܤ  ൌ ሺܣ ٚ ሻܤ ْ  (4)       ܤ

 
The closing of set A by structuring elements B denoted by 

A●B is defined as 
 

ܤ●ܣ ൌ ሺሺܣ ْ ሻܤ ٚ  ሻ       (5)ܤ

III. MORPHOLOGY 

The binary morphology can be easily extended to grayscale 
morphology. The main differences come from the definition of 
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erosion and dilation as other operations basically depend on 
them. 

A. Grayscale Erosion and Dilation 

A gray scale image can be considered as 3-D set when the 
first two elements are the x and y co-ordinates of a pixel and 
the third element is gray scale value. The same concept can be 
applied to the grayscale structuring elements. 

Thus gray scale erosion, denoted by ݂ ٚ ܾ ,is denoted as 
 

ሺ݂ ٚ ܾሻሺݏ, ሻݐ ൌ max ሼ݂ሺݏ െ ,ݔ ݐ ൅ ሻݕ െ
௕ሺ௫,௬ሻ

௦ା௫
, ሺݐ ൅ ሻ߳ݕ ௙݀ሺݏ,  ௕ሽ (6)ܦሻ߳ݕ

 
When Df and Db are the domains of each image or function 

e.g, f and b respectively. Grayscale dilation of f by fْb 
denoted by is defined as 

 
ሺ݂ ْ ܾሻሺݏ, ሻݐ ൌ max ሼ݂ሺݏ െ ,ݔ ݐ െ ሻݕ െ

௕ሺ௫,௬ሻ

௦ି௫
, ሺݐ െ ሻ߳ݕ ௙݀ሺݏ,  ௕ሽ   (7)ܦሻ߳ݕ

 
Like binary dilation and erosion, gray scale dilation and 

erosion are dulas w.r.t. function completion and reflection. 
The relation is given by 

 
ሺ݂ ٚ ܾሻ௖ሺݏ, ሻݐ ൌ ሺ݂௖ ْ ܾሻሺݏ,  ሻ      (8)ݐ

B. Gray Scale Opening and Closing 

The opening of a gray image f by a structuring element b, 
denoted by f○b is defined as 

 
݂  ܾ ൌ ሺ݂ ٚ ܾሻ ْ ܾ          (9) 

 
and closing is denoted by f●b as 

 
݂●ܾ ൌ ሺ݂ ْ ܾሻ ٚ ܾ         (10) 

C. Morphological Gradient 

Morphological gradient can be generated using dilation and 
erosion. Dilation gives the original set plus an extra boundary, 
the size and shape of the boundary depends on the shape and 
size of the structuring element. Erosion gives the points for 
which the structuring element is contained in the original set. 
The outer boundary of the original shape is removed by 
erosion. The morphological gradient is generated by 
subtracting an eroded image from its dilated version. The 
morphological gradient highlights sharp gray-level transitions 
in the input image. 

Where we have denoted erosion as ݂ ٓ  ܾ and dilation as 
݂ ْ  ܾ. With erosion and dilation morphological gradient can 
be denoted as 

 
ܩܯ                   ൌ  ሺ݂ ْ  ܾሻ െ ሺ݂ ٓ  ܾሻ     (11) 

D. Morphological Smoothing 

One way to achieve smoothing is to perform a 
morphological opening followed by a closing. Opening 
smoothes the contour by removing thin bridges and 
eliminating thin protrusions. Closing also smoothes the 
contour, but by enforcing bridges and closing small holes. The 
boundary of opening with a circular structuring element 

corresponds to rolling a ball on the inside of the set. The 
boundary of closing corresponds to rolling a ball on the 
outside of the set. 

E. Multiscale Edge Detector 

To achieve more robustness to noise, a multiscale gradient 
algorithm can be applied. Multiscale means image analysis 
with structuring elements of different or multiple sizes. The 
combination of morphological gradients in different scales is 
insensitive to noise as well as to extraction of various 
finenesses of the edges. The acceptable multiscale edge 
detector was proposed to obtain the gradient of the image 

 

ሺ݂ሻܩܯ ൌ ଵ

௡
∑ ሾሺሺ݂ ْ ܾ௜ െ ሺ݂ ٚ ܾ௜ሻሻ ْ ܾ௜ିଵሿ௡

௜ୀଵ     (12) 

 
where, n is scale and bi denotes the assembly of square 
structural elements where sizes are (2i+1)*(2i-1) pixels. 

IV. LINEAR, BILINEAR AND CONFORMAL 

TRANSFORMATIONS 

A. Linear Transformation 

In mathematics, a linear map (also called a linear mapping, 
linear transformation or, in some contexts, linear function) is a 
mapping V → W between two modules (including vector 
spaces) that preserves (in the sense defined below) the 
operations of addition and scalar multiplication. An important 
special case is when V = W, in which case the map is called a 
linear operator, or an endomorphism of V. Sometimes the 
definition of a linear function coincides with that of a linear 
map, while in analytic geometry it does not. 

A linear map always maps linear subspaces to linear 
subspaces (possibly of a lower dimension); for instance it 
maps a plane through the origin to a plane, straight line or 
point. 

In the language of abstract algebra, a linear map is a 
homomorphism of modules. In the language of category 
theory it is morphism in the category of modules over a given 
ring. 

Let V and W be vector spaces over the same field K. A 
function f: V → W is said to be a linear map if for any two 
vectors x and y in V and any scalar α in K, the following two 
conditions are satisfied: 

 
݂ሺݔ ൅ ሻݕ ൌ ݂ሺݔሻ ൅ ݂ሺݕሻ        (13) 

 
݂ሺݔߪሻ ൌ  ሻ         (14)ݔሺ݂ߪ

 
This is equivalent to requiring the same for any linear 

combination of vectors, i.e. that for any vectors x1, ..., xm א V 
and scalars a1, ..., am א K, the following equality holds: 

 
݂ሺܽଵݔଵ ൅ ڮ ൅ ܽ௠ݔ௠ሻ ൌ ܽଵ݂ሺݔଵሻ ൅ ڮ ൅ ܽ௠݂ሺݔ௠ሻ    (15) 

 
Denoting the zero elements of the vector spaces V and W by 

0V and 0W respectively, it follows that f(0V) = 0W because 
letting α = 0 in the equation for homogeneity of degree 1, 
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VI. CONCLUSION 

Mathematical morphological processes are dealt as a part of 
nonlinear signal processing area and this concept is widely in 
vogue. The present study has meticulously analyzed the every 
sub processes that are involved to materialize the image 
segmentation and established that the constituent steps are 
mainly linear, bilinear and conformal transformation. The 
inverse transformations may be applied for implementing the 
segmentation of various images. The given explanation also 
holds good for all types of images. 
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