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Abstract—This paper introduces a novel approach to estimate the 

clique potentials of Gibbs Markov random field (GMRF) models 
using the Support Vector Machines (SVM) algorithm and the Mean 
Field (MF) theory. The proposed approach is based on modeling the 
potential function associated with each clique shape of the GMRF 
model as a Gaussian-shaped kernel. In turn, the energy function of 
the GMRF will be in the form of a weighted sum of Gaussian 
kernels. This formulation of the GMRF model urges the use of the 
SVM with the Mean Field theory applied for its learning for 
estimating the energy function. The approach has been tested on 
synthetic texture images and is shown to provide satisfactory results 
in retrieving the synthesizing parameters. 
 

Keywords—Image Modeling, MRF, Parameters Estimation, 
SVM Learning.  

I. INTRODUCTION 
HE subject of image modeling involves the construction of 
models or procedures for the specification of images. 

These models serve a dual role in that they can describe 
images that are observed and also they can generate synthetic 
images from the model parameters. This paper concerns with 
a specific type of image models, the class of texture models. 
There are important areas of image processing in which 
texture plays an important role: for example, classification, 
image segmentation, and image encoding. Julesz [1] considers 
the problem of generation of familiar textures from the 
theoretical and practical viewpoints. In addition, 
understanding texture is an essential part of understanding 
human vision [2]. These considerations have led to an 
increased activity in the area of texture analysis and synthesis.  

Markov random field (MRF) models have been 
successfully used to represent contextual information in many 
'site' labeling problems. A site labelling problem involves 
classification of each site (pixel, edge element, and region) 
into a certain number of classes based on an observed value 
(or vector) at each site. Contextual information plays an 
important role here because the true label of a site is assumed 
to be compatible with the labels of the neighboring sites. 
Markov random fields are appropriate models of context 
because they can be used to specify this spatial dependency or 
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spatial distribution. The class of MRF with exponential priors 
can be described, equivalently, by Gibbs models. Hence, for 
this vast class, the parameters of the MRF can be specified in 
terms of the clique potentials in the Gibbs distribution [3]. A 
Gibbs-Markov model is specified by the model order and the 
set of clique potentials. The flexibility of the Gibbs-Markov 
random fields generated considerable research interest in the 
past three decades. However, the problem of parameter 
estimation has remained to a large extent unsolved. Therefore, 
a systematic method for specification of these parameters is of 
significant interest. Several schemes have been proposed in 
the computer vision literature to estimate the parameters of an 
MRF model [4-7]. For MRFs defined on pixel sites (e.g. 
texture modeling), these schemes have been applied with 
considerable success. For MRFs defined in edge sites [5] (line 
variable used to denote discontinuity between adjacent pixels), 
however, the available parameter estimation techniques are 
difficult to apply because of the lack of true edge labels. Also 
the Least squares (LS) method is not accurate [6]. 

The Support Vector Machines (SVM) has been introduced 
and used intensively for solving pattern recognition problems 
either as direct classifiers [8], or as a density estimation 
algorithm [9]. In this paper we introduced a new approach 
based on using the SVM to estimate the energy function of the 
GMRF model. The potential function for each clique is 
assumed as a Gaussian-shaped kernel. This assumption leads 
to the formulation for the energy function as a weighted sum 
of Gaussian kernels. The SVM is used then to estimate the 
parameters of this energy function. In the proposed approach 
the Mean Field theory is used in the learning of the SVM to 
estimate the weight of each Gaussian kernel associated with a 
clique shape. 

Experimental evaluation on modeling synthetic texture 
images show that the proposed algorithm managed to retrieve 
the parameters by which the image was synthesized. Also, 
several synthesizing experiments are provided to illustrate the 
performance of the proposed algorithm. 

II. MARKOV RANDOM FIELD 
The study of Markov random fields has had a long history, 

beginning with Ising thesis on ferromagnetism [10]. Although 
it did not prove to be a realistic model for magnetic domains, 
it is approximately correct for phase-separated alloys, 
idealized gases, and some crystals. The model has traditionally 
been applied to the case of either Gaussian or binary variables 
on lattice. Besag [4] allows a natural extension to the case of 
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variables that have integer ranges, either bounded or 
unbounded. These extensions, coupled with estimation 
procedures, permit the application of the Markov random field 
to texture modeling. Before going through the modeling 
procedure, a couple of important definitions are provided. 

Definition 1: A clique c  is a subset of  S  for which every 
pair of sites is a neighbor. Single pixels are also considered 
cliques. The set of all cliques on a grid is denoted by C . 

Definition 2: A random field X  is an MRF with respect to 
the neighborhood system { }Sss ∈η=η ,  if and only if: 

a. 0)( >= xXp  for all Ω∈x , where Ω  is the set of all 
possible configurations on the given grid; 

b. )|()|( || ssssrsrsss xXxXpxXxXp ∂∂ ===== , 

where rs |  refers to all 2N  sites excluding site r , and 
s∂  refers to the neighborhood of site s . 

Definition 3: X  is a Gibbs random field (GRF) with 
respect to the neighborhood system { }Sss ∈η=η ,  if and 
only if:  

)(1)( xEe
z

xp −=                 (1) 

where z  is a normalization constant called the partition 
function and )(xE  is the energy function of the form: 

    ∑
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where cV  is called the clique potential. Generally, cV  is a 
function of the cliques around the site under consideration. 

Only cliques of size 2 are involved in a pairwise interaction 
model. The energy function for a pairwise interaction model 
can be written in the form [4]: 
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where G  is the potential function for single-pixel cliques and 
H  is the potential function for all cliques of size 2. The 
parameter m  depends on the size of the neighborhood around 
each site. For example, m  is 2, 4, 6, 10, and 12 for 
neighborhoods of orders 1, 2, 3, 4, 5, respectively. Numbering 
and order coding of the neighborhood up to order five is 
shown in Fig. (1). Also Fig. (1-1) shows the location of site 

rtx +:  in the neighborhood system. 
In this paper we proposed the following model for G  and 

H  potential functions. 
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where ),( baI  is the indicator function where 1),( =baI  if 
ba = , otherwise equal 0 . )(aI  is always equal 1 . 

The estimated mean values (
rwµ ) of the clique shapes of 

second order MRF (shown in sequence at the bottom of 
Fig.(3)) are shown in TABLE I. 

 
TABLE I 

THE REFERENCE MEANS FOR 2ND ORDER MRF CLIQUES. 
Parameter 

0wµ  
1wµ  

2wµ  
3wµ  

4wµ  

Value 1/21 3/21 5/21 7/21 9/21 
Parameter 

5wµ  
6wµ  

7wµ  
8wµ  

9wµ  

Value 11/21 13/21 15/21 17/21 21/21 
 

 
(a) (b) 

Fig. 1 Numbering and order coding of neighborhood structure 

III. SUPPORT VECTOR MACHINES REGRESSION 

In this paper the Support Vector Machines (SVM) 
technique is used as a regression algorithm for estimating the 
parameters of the GMRF model. The details of the SVM 
regression can be found in our previous work [9], but here 
only the main outlines of the algorithm are presented. In the 
following, the SVM as a regression tool is considered as the 
maximum a posteriori prediction with a Gaussian prior under 
the Bayesian framework. 

Thus, the output from the SVM regression for the sample 
D  is represented as a Gaussian process with a zero mean in 
the following form: 
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where [ ]),( ji xxKK n =  is the covariance matrix at the points  

of D  and D)(g  is the SVM output vector. 
The performance of the SVM regression algorithm is 
characterized by the Vapnik's ε -loss function which has the 
form: 
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Depending on this loss function, the likelihood of the target 
output vector T  given the actual SVM output will be in the 
form: 
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where ]...,,,[ 21 nttt=T . 
Using Equations (6) and (8) and from Bayes' theorem: 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3557

 

 

)()(det2

)()(
2
1))(,(exp

)(
))(())((

))((

1

1

DK

DKDLM

D
DD|D

D|D

n p

gtC

p
pp

p

T
n

n

i
ii

π

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

=

=

−

=
∑ ggx

gg
g

    (9) 

where:  

   
n

C
CM ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ε

=
)1(2

. 

Using the posterior prediction distribution ))(( D|Dgp ,  
which is defined in Eq. (9), the predicted (expected) SVM 
output on a new test point x  is given by: 
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Substituting in Eq. (10) from the previous equations and 
after some mathematical reductions which are omitted for 
space limitations, the output )(xg  of the SVM regression 
algorithm has the form: 

   ∑
=
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n

i
iiwg
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),()( xxx K             (11) 

where n  is the number of samples in the training set  D , 
),( xx iK  is the kernel function used by the SVM regression 

algorithm and iw ’s are the weight coefficients. 
There are different methods for estimating the weight 

coefficients in Eq. (11). One of the new algorithms is 
suggested in our recent work [9] which uses the Mean Field 
theory to approximate an efficient and fast learning algorithm 
for the SVM to estimate these weight coefficients. This 
learning algorithm suggests that the distribution of the SVM 
output )|)(( Digp x  corresponding to a training instant given 
the rest of the training instants is approximated using the 
Mean Field theory by a more simple distribution. In our 
implementation, a Gaussian distribution function is used for 
approximating )|)(( Digp x . The details for the learning 
procedure can be found in [9]. 

IV. GMRF PARAMETERS ESTIMATION USING SVM 
Comparing the form of the potential function of the GMRF 

model in Eq. (3) with that of the SVM regression output in 
Eq. (11) shows that the SVM can be used for estimating the 
GMRF parameters provided that the SVM regression 
algorithm uses a Gaussian Radial Basis-shaped kernel. In 
order to estimate the weights in the SVM regression 
representation which correspond to the strengths of the cliques 
in the GMRF representation, the joint histogram for all clique 
shapes in the given image are calculated. The MF-based SVM 
regression algorithm is used to approximate (fit a regression 
to) the joint histogram by estimating the weights in Eq. (11), 
which correspond to the MRF parameters as stated before. 

V. EXPERIMENTAL RESULTS 

Figure (2) shows a texture image generated by Metropolis 
algorithm [11]. Figure (3) shows the joint histogram for the 
ten cliques shape of the second order neighborhood system.  
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Fig. 4 The estimated mixture of Gaussians distributions using 

MF-based SVM 
 
Figure (4) shows the estimated Mixture of Gaussian 
distribution using the SVM which shows that the SVM 

 
Fig. 2 A texture image generated by Metropolis algorithm 

 
Fig. 3 The joint histogram for the ten clique shapes of the 2nd order 

MRF model 
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manages to estimate optimal values for the clique strengths. 
TABLE II, shows the estimated parameters for each 
distribution. Figure (5) shows the regenerated image using the 
estimated parameters shown in TABLE II. More results 
obtained by the proposed approach are shown in Fig. (6).  

 
TABLE II 

 ESTIMATED PARAMETERS FOR THE  MIXTURE OF 
GAUSSIAN DISTRIBUTIONS 

Component Mean Weight Variance 
1 1/21 0.1098 0.1592 
2 3/21 0.1102 0.1592 
3 5/21 0.1102 0.1592 
4 7/21 0.1107 0.1592 
5 9/21 0.1777 0.1592 
6 11/21 0.0559 0.1592 
7 13/21 0.0894 0.1592 
8 15/21 0.0559 0.1592 
9 17/21 0.0894 0.1592 

10 21/21 0.0906 0.1592 
 

 
Fig. 5 Regenerated texture image using the estimated 

parameters in Table 2 

VI. CONCLUSION 
In this paper we introduced a novel approach to estimate the 

clique potentials in Gibbs-Markov image models. The 
proposed approach is based on modeling the potential 
function associated with each clique shape as a Gaussian-
shaped kernel. In turn, the energy function of the GMRF will 
be in the form of a weighted sum of Gaussian kernels. Using 
the SVM with the Mean Field theory applied for its learning, 
we estimate the energy function. The approach has been tested 
on synthetic texture images and the results show that it 
provides satisfactory results. 

 
 
 
 
 
 
 
 
 

Fig. 6 Original and regenerated images using the proposed 
approach 
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