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Abstract—Supersonic hydrogen-air cylindrical mixing layer is 
numerically analyzed to investigate the effect of inlet swirl on 
ignition time delay in scramjets. Combustion is treated using detail 
chemical kinetics. One-equation turbulence model of Spalart and 
Allmaras is chosen to study the problem and advection upstream 
splitting method is used as computational scheme. The results show 
that swirling both fuel and oxidizer streams may drastically decrease 
the ignition distance in supersonic combustion, unlike using the swirl 
just in fuel stream which has no helpful effect. 
 

Keywords—Ignition delay, Supersonic combustion, Swirl, 
Numerical simulation, Turbulence.  

I. INTRODUCTION 
HERE were a lot of interests in the development of high 
speed propulsion systems for aerospace vehicles as 

scramjets which have led to extensive experimental and 
numerical efforts on supersonic combustion phenomena up to 
now. However, these studies confront many unresolved 
difficulties and much research remains to be done.  

One of the principal problems encountered has arisen from 
the residence time being of the same order of magnitude as the 
reaction delay time within the combustion chamber of 
supersonic combustors. To decrease the combustor length and 
weight in this situation, rapid ignition as well as fast and 
complete combustion is significant. In addition, the fluid 
mechanics in an actual scramjet is rather intricate due to 
various flow structures such as shock wave interactions arise 
from complex combustor geometry.  

So many scientists have concentrated on the reacting 
mixing layers established between two parallel fuel-air 
streams, to make fundamental studies in this area.  

Ju and Niioka [1] have made analytical studies on a two-
dimensional laminar supersonic mixing layer of unpremixed 
oxidant-fuel streams, using three-step reaction kinetics to 
predict the ignition distance. They have analyzed the effects of 
free shear, Mach number, and reaction rates on the ignition 
time delay. They have also numerically predicted the ignition 
distance for hydrogen-air and methane-air laminar mixing 
layers using reduced kinetics mechanism [2, 3]. Da Silva et 
Al. [4] have investigated the effect of initial temperature and 
velocity gradients on ignition in supersonic laminar hydrogen-
air mixing layer and found that the flame always starts from 
the airside.  
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Im et Al. [5] have asymptotically analyzed the thermal 

ignition behavior in laminar supersonic mixing layer using 
one-step overall reaction.  They reported that the ignition 
distance, for the case where the speed of the air stream is 
greater than that of the hydrogen, first increases as the Mach 
number increases. But it decreases with further increment in 
Mach number by virtue of the increase in temperature in the 
mixing layer because of friction generated heat. They have 
also repeated such studies using reduced reaction mechanism 
[6].  

Nishioka and Law [7] have studied the temperature effect 
on ignition in supersonic laminar hydrogen-air mixing layer 
using detail chemistry and found that there is a lower limit of 
the air stream temperature below which ignition in a 
combustion chamber is not possible and at higher 
temperatures, radical proliferation causes ignition instead of 
thermal runaway. Fang et Al. [8] have investigated the effect 
of initial pressure on ignition distance in supersonic laminar 
mixing layer in the presence of a pressure gradient. Tien and 
stalker [9] have computationally studied the effect of the 
initial conditions on the ignition distance in supersonic 
laminar hydrogen-air mixing layer using detail chemical 
kinetics and showed that the initial oxygen atom concentration 
has serious effect on ignition time delay.  

Most of researches have been performed on laminar flow 
assumption and there are few studies reporting the problem in 
the presence of turbulent phenomena. Chakraborty et Al. [10] 
have investigated the supersonic reacting turbulent mixing 
layer using various empirical DNS data and Zambon et Al. 
[11] have predicted the ignition distance in similar condition 
using automatic reduction procedure chemical kinetics, for 
various splitter lip thicknesses.  

It is obvious that ignition distance estimation is one of the 
most important purposes in scramjet design, and it is better to 
reduce this. Zabaikin et Al. [12] have experimentally 
investigated the effect of hydrogen peroxide addition on 
ignition and combustion in supersonic hydrogen-air flow and 
found that it becomes possible to decrease abruptly the 
ignition delay, improve the flame stability, and increase the 
combustion efficiency by using small amounts of chemically 
active additives.  

Recently, the Author [13] has numerically studied the effect 
of inlet turbulence and chemical additive on ignition time 
delay in supersonic combustible mixing layers and showed 
that they can be significant controlling parameters. On the 
other hand, in analysis of aero-engines such as gas turbine 
combustors, some studies have been done to find suitable 
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methods for achieve acceptable pollutants level and better 
mixing. One of the best ways especially in premixed 
combustors is using the swirl. The swirl is also of practical 
importance in combustion as an agent that can increase 
combustion efficiency.  

The study of swirling flow combustion received 
considerable attentions in the past decade [14-16]. Most of 
such studies have been done in subsonic combustors. In the 
present study, the swirl effect on ignition time delay in 
supersonic turbulent cylindrical mixing layer has been 
analyzed numerically using detail chemical kinetics of 
hydrogen and air. The influences of turbulence and swirl vane 
angle on ignition distance have been predicted and discussed.  

II. GOVERNING EQUATIONS 
Although the flowfield within a considered geometry is 

three-dimensional due to the inlet swirling condition, the flow 
has still angular symmetry ( 0=∂∂ θ ). So the three-
dimensional Reynolds averaged compressible equations 
governing the continuum flow are used with regard to the 
simplifying condition of this symmetry. The equations 
representing the conservation of mass, momentum, energy, 
and species are presented in the following conservation form 
[17].  
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The stress tensors are defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−

∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=

⎟
⎠
⎞

⎜
⎝
⎛ ∇−

∂
∂

=

V
y
v

y
w

y
w

x
w

V
y
v

x
v

y
u

V
x
u

eff

effy

effx

effyy

effxy

effxx

.
3
22

.
3
22

.
3
22

μτ

μτ

μτ

μτ

μτ

μτ

θθ

θ

θ

 

(3) 

 
Here 
 

( )

∫
∑

∑

+Δ=

∇−∇−=

Δ++++=

+=

dTchh

mhDTkq

hmwwvvuuTce

ip
o

ifi

iieffeff

o
jfjv

teff

,

,2

ρ

μμμ

 
(4) 

 
The Spalart-Allmaras turbulence model is used here to close 

the system of RANS equations [18]. Although this model has 
been developed initially for external aerodynamic flows, it has 
been used successfully in different reactive flow simulations. 
The eddy viscosity is determined through a solution of 
following partial differential equation.  
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This equation is solved for the variable ν~  and the eddy 

viscosity is calculated as 1
~

vt fνν =  where the damping function 

1vf  is used to treat the buffer layer and the viscous sub-layer. 
Here  
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The parameter d  is the distance to the closest wall, S  is 

the magnitude of vorticity, and S~  is modified strain rate. The 
function wf  is given as 
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increased significantly due to helical motion of O-F particles 
in combustion chamber. On the other hand, the turbulence 
generation due to rotating mixing layer is disappeared and 
there are no turbulent ignition difficulties as mentioned before. 
Figure 7 illustrates the ignition distance versus inlet swirl 
angle. It is obvious that the swirling oxidizer-fuel flows have 
much better chemical reactions emerges in lower ignition 
distances. Using proper inlet swirlers in scramjet engines may 
be used successfully to reduce the ignition time delay.  

 

 
Fig. 7 Ignition distance variation due to inlet swirl angle 

IV. CONCLUSION 
In the present study, the ignition of hydrogen-air supersonic 

cylindrical mixing layer is numerically analyzed using detail 
chemical kinetics. The focus is on the ignition distance 
estimation and reduction by inflow swirl in combustor. It is 
shown that using the swirl just in fuel stream has no useful 
effect on ignition acceleration. It enhances the ignition 
distance due to the reduction in effective residence time in 
lower swirl angles, and reduces it due to downstream pressure 
increment in higher angles where they compensate each other 
finally. The studies illustrates that if the swirl is used in fuel 
and oxidizer streams, the ignition distance is decreased 
significantly by enhancing the swirl angle, which can be used 
in supersonic combustion chambers.  
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