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Abstract—One of the most important parts of a cement factory is 

the cement rotary kiln which plays a key role in quality and quantity 
of produced cement. In this part, the physical exertion and bilateral 
movement of air and materials, together with chemical reactions take 
place. Thus, this system has immensely complex and nonlinear 
dynamic equations. These equations have not worked out yet. Only 
in exceptional case; however, a large number of the involved 
parameters were crossed out and an approximation model was 
presented instead. This issue caused many problems for designing a 
cement rotary kiln controller. In this paper, we presented nonlinear 
predictor and simulator models for a real cement rotary kiln by using 
nonlinear identification technique on the Locally Linear Neuro-
Fuzzy (LLNF) model. For the first time, a simulator model as well as 
a predictor one with a precise fifteen minute prediction horizon for a 
cement rotary kiln is presented. These models are trained by 
LOLIMOT algorithm which is an incremental tree-structure 
algorithm. At the end, the characteristics of these models are 
expressed. Furthermore, we presented the pros and cons of these 
models. The data collected from White Saveh Cement Company is 
used for modeling. 

 
Keywords—Cement rotary kiln, nonlinear identification, Locally 

Linear Neuro-Fuzzy model. 

I. INTRODUCTION 
EMENT production is a complex process which is 
composed of a series of activities requiring considerable 

technological support [1]. A cement rotary kiln is a nonlinear 
and distributed parameter system that demonstrates time-
varying nonlinear behavior due to the chemical reactions. The 
basic process in a cement production plant is baking the raw 
material mixed in a rotary kiln. Its task is to take an 
appropriate mixture of input material and to gradually burn 
and bake it to produce clinker [2]. 

Cement rotary kiln is the most important part of a cement 
factory whose outcome is cement clinker. A rotary kiln is a 
cylinder with a length of around 70 meters and a diameter of 
around 5 meters in a factory with a capacity of producing  
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about 2000 tons of clinker in a day. The kiln is rotated by a 
powerful electrical motor. The temperature in the hottest point 
in the kiln is up to 1400ºC. 

Control of a cement kiln is complicated by the fact that 
several factors such as nonlinearity, dynamism, huge size and 
MIMO with a gross interference are involved. Having 
different purposes, such as control, prediction and simulation, 
most researchers attempt to identify this complicated system 
and try to design an accurate model expressing the intricate 
and nonlinear operational procedure of the kilns. 

Recently, some attempts have been made to develop 
computational fluid dynamics based models (CFD) to simulate 
either calciner [3] or kiln [4-5].Besides, the technique of 
thermo chemical process simulation has been used to compile 
a model that enables the chemical reactions to be calculated in 
various process stages (preheater, calcinatory, rotary kiln 
including the transition zone and sintering zone and cooler) 
[6]. Some attempts have also been made to develop reaction 
engineering models for kiln [7]. The numerical experiments 
using the computational model, could also predict the 
influence of kiln-operating parameters in it. Although that 
some significant results have been obtained in the past years, 
it is evident that there are many uncertainties involved in the 
models. None of the above theoretical models for kilns are 
sufficient as predictive tools for rotary kiln operation. So, 
more efforts should be made to model the kiln that could 
demonstrate its behavior. It is expected that the model will be 
a useful tool to industry in many situations. 

On the other hand, intelligent and automatic systems have 
an important role in both the academia and industrial 
applications. Artificial neural networks, fuzzy systems [8] and 
neuro-fuzzy systems [9-10], show some main fields of 
computational intelligence, which have many applications 
ranging from prediction to control and system identification 
[11].These techniques provide powerful tools for non 
parametric analysis of nonlinear systems model-free 
processing and control of uncertain systems and plants.  

One of the most important parts of modeling a system is to 
select the proper model structure. The other parts are 
dependent to selection of a suitable model structure; this issue 
is so important that imperfection in this section may lead to 
some sever problems in other parts and all the costs and 
attempts made to overcome the problem would be in vain. By 
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using the previous result of identification of cement rotary 
kiln project [12], the linear identification techniques could not 
present a suitable model for cement rotary kiln; and 
consequently using a nonlinear identification technique is 
more suitable for this propose [13-14].  
  In this work, to continue the previous effort to design 
nonlinear models, an attempt is being made to improve the 
models and make more accurate ones. In this manner, a 
fourteen-week operation of the kiln was considered and the 
new collected data was pre-processed. Then a proper model 
structure is selected by analyzing data and after that a model is 
produced. Two LLNF models are designed for rotary kiln. 
The first model is prediction type which has been used before, 
regarding only one output, a prediction horizon of roughly 
seven minutes and the data collected based on two-week 
operation of the kiln [13, 15]; however, in this paper the 
prediction model presents based on all four outputs, a 
prediction horizon of fifteen minutes with higher accuracy and 
a fourteen-week operation of the kiln. This model can be 
useful in fault detection subject. The second model is a 
simulator type. This model is presented for the first time in 
this paper. This model is useful to study kiln behavior in 
different conditions and designing the model-based controller. 

The paper is organized as follows: In the next Section, the 
selection procedure of inputs and outputs will be discussed. 
Afterwards, the pre-processing stages of the data for acquiring 
appropriate identification data will be presented. Next, we will 
calculate input channels delay estimation. Then, we will 
briefly discuss LLNF model and the training procedure of the 
parameters of this network based on Locally Linear Model 
Tree (LOLIMOT) technique and the results of predictor and 
simulator models for the kiln are presented and analyzed. At 
the end, the advantages and disadvantages of each of the 
above said models and conclusion will be discussed. 

II. SELECT INPUT AND OUTPUT VARIABLES  
As mentioned in the introduction, the cement rotary kiln has 

a complicated system due to the physical operation such as 
martial feed rate, fuel and air flow, kiln speed as well as 
chemical reactions. Operators usually can apply some inputs. 
These commands for the kiln model can be construed as the 
model inputs. Furthermore, main sensors in this section could 
be selected as output variables in the model. To identify the 
rotary kiln of the White Cement Saveh Company, the input 
and output variables, based on process engineering and 
operators experience, are shown in tables 1 and 2. 

TABLE I INPUT VARIABLES IN KILN 
Input variables  Variable name 

Material Feed Rate  Mat 
Fuel Feed Rate Fuel 
Kiln Speed Ks 
I.D Fan Speed Fan 
Secondary Air Pressure Ap 

 
 
 
 
 
 

 
TABLE II OUTPUT VARIABLES IN KILN 

Output  variables Variable name 
Back-end temperature BE 
Pre-heater temperature Pre 
CO content CO 
Kiln Ampere Ka 

 

By selecting these inputs and outputs, it is possible to make 
a model that can show the real kiln behavior. Identification of 
the cement rotary kiln with these input and output variables is 
identification of a system with 5 inputs and 4 outputs. 
However, identification of a MIMO system is a hard task; 
Moreover, the results are not accurate. Therefore, we study 
this system as 4 MISO plant and try to identify these four sub-
systems [16]. 

III. DATA USED IN MODELING 
Three important factors in modeling by system 

identification methods are: 
1)   Collection of correct and valid data 
2)  Selection of a suitable and useful model 
3)  A powerful method to adjust model based on information. 
 One of the most important assumptions to get valid 
information from an input and an output is that the changes 
happened in the output are affected by the system input and 
not disturbance or noise. As we collected input and output 
data during operation of the kiln to identify system behavior, 
we should check the changes in outputs that are more 
influenced by inputs. Its interference from disturbance inputs 
is lower, the validity of data would be better. Therefore, data 
mining is one of the most important and difficult steps in 
identification in order to extract valid data from the available 
data. 

A. Collection and selection of proper data 
To identify a model for plant, the collected data for 

identification should be reliable enough in order to illustrate 
various dynamics of the system. To do this, various signals 
such as PRBS and Chirp have been used to simulate and 
obtain dynamics of the system in numerous books and 
references. However, our plant is a real industrial factory and 
because of safety and operation limitations, it is impossible to 
give various signals with different frequencies to the system. 
Therefore, we must use the available data from normal 
operation. On the other words, identification is passive type. 
To be able to make an accurate and full identification, 
fourteen-week data are collected from cement factory. Having 
considered and analyzed the fourteen-week data, we made an 
effort to eliminate constant, repetitive and faulty operational 
points. The reason why we eliminated the constant and 
repetitive points is that in this condition the variables are 
affected just by the small noise and disturbance. In practice 
the generated dynamics by these data are not the main 
dynamics. On the other hand, if the volume of the used data 
for making a model is large in one point, this point gets more 
weight and increases error in other operating points. It shows 
that for modeling the cement rotary kiln, it is impossible to 
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use raw data that are collected from factory. Consequently, it 
is necessary to use a big size of data, and then, analyzing 
various operation points in order to provide reliable data that 
could express system behavior. 

There are several reasons why we could not use the original 
data collected from the kiln for identification. These reasons 
include high frequency noise or offset existing in the input 
and output data. Therefore, the raw data is not applied directly 
to indentify the system. To overcome some of these problems, 
we should try to use some pre-processing methods presented 
in identification references [17] which will be discussed in the 
next part. 

B. Sampling Frequency 
In computer controlled systems, sampling of continuous 

signals leads to annihilation of some information. Therefore, it 
is essential to select a syntactic sampling frequency which 
does not interfere with the control system. Although high 
frequency sampling seems better for control propose, it may 
cause some problems in system identification. Three methods 
are proposed for sampling for the purpose of system 
identification [17]. 
1) Smallest Time constant           Ts = τmin / 3                       (1) 
2) Band width                              fs= 10 f0                            (2) 
3) Settling Time                           Ts =Tst / 20 to Tst / 100       (3) 
 

In this paper, in order to obtain sampling frequency, all 
inputs and outputs signal spectra are drawn and we obtain 
frequency range of each one of them. Studying the power 
spectrum of the output signals shows that the smallest time 
constant of the system is 3 minutes. Based on the equation 1 
the rate of sampling was assumed to be 60 seconds. 

C. Peak Shaving 
Initially, we have to consider and observe the input and 

output data, in order to realize the dynamism that may occur 
in the system, to a certain degree. Peak shaving and smoothing 
intense changes in data are very important. These sudden 
changes may occur due to the operation of sensors or data 
acquisition cards. They cause some numerical problems in 
measuring and recording variables as well .This may happen 
because the sensor is turned off suddenly for instance, when it 
needs to substitution or repaired. Recall that the used data in 
this project have been collected when the factory was 
operating. These sudden changes have a lot of energy in high 
frequency rang that degrades estimation of the parameters of 
the models or validity rate [12]. To solve this problem, the 
data are passed through a proper filter that can eliminate noise 
signal from original signal. But all signals have various signal 
spectra and to design band pass filter, we face with many 
problems. For example, if we increase the width of band pass 
filter, it will cause some quantities of noise signal to remain 
on the original signal; and if we decrease the width of band 
pass filter, it will cause some input signals to perish and 
sometimes change the input signals shape. You can see these 
situations in figures 1 and 2. Figure 1 shows the result of data 
that passes through a high frequency band pass filter; 
consequently the noise signal remains on the original signal. 

Figure 2 shows the effect of adjustment of band pass filter to a 
low frequency band pass filter; although it can eliminate noise 
signal but it changes original signal shape. To solve this 
problem we need a filter with swift descent characteristic. 
Therefore, the Chebyshev filter is selected and all signals are 
passed through this filter. But after observing the result we 
understood because of its frequency characteristics, it causes 
fluctuation in settling status. Thus, we select a first order 
Butterworth-low-pass filter that has a proper band pass. By 
selecting 0.0015 HZ band width, it is possible to eliminate 
noise and disturbing signals from original signal so that the 
input signals are not affected. Figure 3 shows the result of 
using this filter. 
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Fig. 1 The effect of high band pass filter on data 
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Fig. 2 The effect of using low band pass filter on data 
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Fig. 3 The effect of using Butterworth filter on data 

 

D. Normalizing Data 
In this part, we have tried to normalized data. The reason 

why we want to normalize data is that the inputs and outputs 
data have different ranges that cause error in data 
quantization. This increases the quantization error during 
identification phase, and consequently the plant not identified 
well. Therefore, to identify the model, it is better to normalize 
all the data Figure 4 shows both the original and the 
normalizing of one of the input signals. 
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Fig. 4 Original data and Normalized data for Kiln speed (Ks) 

 

E. Input Channels Delay Estimation 
In the identification of the process, the first parameter that 
should be determined is pure delay estimation. While this 
characteristic is correctly estimated from the process data, the 
identification of process simplified and gets suitable order. On 
the other hand, estimation of delay simultaneous to other 
parameters of model causes an increase in the computational 
efforts. This problem in the kiln model identification where 
each MISO model has five different inputs and a vast content 
of data is exposed more difficulties in system identification. In 
order to obtain inputs delay estimation, various methods such 
as step response test, cross correlation, analysis and mutual 
information analysis are applied.  In this paper, we used the 
Lipschitz method that has been presented by Makarmi et al 
[18]. The results are shown in table 3.  
 

TABLE III INPUTS AND OUTPUTS DELAYS 
Delays (min)  

Ka CO BE  Pre Variables 
10 15 18 30 Mat 
25 5 4 10 Fuel 
0 5 36 40 Ks 

10 0 0 5 Fan 
30 3 0 5 Ap 

IV. IDENTIFICATION TECHNIQUE 
As mentioned in the previous sections, linear methods do 

not present a suitable model for rotary kiln. Using LLNF 
network for kiln identification is more proper. Thus, in this 
section, the kiln is identified by two prediction and simulation 
techniques.  

A. Prediction Technique 
    Figure 5 shows the structure of model predictor used for 
identification of the kiln. Two different groups of inputs u(k-
d-i) and the previous real process outputs y(k-i) are given to 
the model where the future output )(ˆ ky will be predicted. 
Inputs to the model are the delayed inputs of the plant and 
previous samples of the output of the plant. 

 
Fig. 5 Structure of prediction model 

 

B. Simulation Technique 
Figure 6 shows a simulation method for a plant. As you see, 

in this technique only the plant inputs are given to the model 
in addition to the previous outputs of the model and the 
outputs which are obtained from pervious steps of the model 
but not from outputs of the real plant. 

 
Fig. 6 Structure of simulation model 

 

 C.  Locally Linear Neuro-Fuzzy Network 
In the preceding section, we estimated the input channel 

delays of the kiln. Knowing these parameters, the search space 
for the identification shrinks and it’s easier to do the rest of 
the job, i.e. determining the suitable number of dynamics on 
each input and the output, and approximating the best function 
which represents the behavior of the kiln as well. We use 
Locally Linear Neuro-Fuzzy (LLNF) network to identify the 
kiln and the LOLIMOT algorithm to find the best structure 
and parameters of the network. The most important reasons 
why LLNF network is selected is its: 
1)   High accuracy 
2)   Robustness 
3)   Computational efficiency and 
4)   Smooth switch for multiple models. 

In the following LLNF networks and the LOLIMOT 
algorithm is reviewed briefly. Then the result of applying 
them on kiln data is represented. 

The network structure of LLNF is depicted in Fig. 7. Each 
neuron realizes a Local Linear Model (LLM) and an 
associated validity function that determines the region of 
validity of the LLM. The network output is calculated as a 
weighted sum of the outputs of the local linear models, where 
the validity function is interpreted as the operating point 
dependent weighting factors. The validity functions are 
typically chosen as normalized Gaussians. 

The local linear modeling approach is based on a divided-
and-conquer strategy. A complex rotary kiln model divided 
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into a number of smaller and thus simpler sub-problems, 
which are solved independently by identifying simple linear 
models [11, 19]. The most important factor for the success of 
this model by a locally linear model method is the division 
strategy for the original complex problem. This will be done 
by an algorithm named LOLIMOT (Locally Linear Model 
Tree). LOLIMOT is an incremental tree construction 
algorithm that partitions the input space by axis-orthogonal 
splits [10]. In each iteration, a new rule or local linear model 
is added to the model and the validity functions that 
correspond to the actual partitioning of the input space are 
computed, and the corresponding rule consequence are 
optimized by a local weighted least squares technique.  

 
Fig. 7 Network structure of a Local Linear Neuro-Fuzzy model 

 
In case of locally linear identification, the most imperative 

concern is the number of neurons. It is desirable that the 
number of neurons be as small as possible. The LOLIMOT 
algorithm is started from one neuron and gradually continues 
to arrive the neuron that shows an acceptable error based on 
sum of squared error curve so that the suitable number of 
neuron is distinct during the identification. Below are the brief 
five basic steps to identify the cement rotary kiln model [11, 
19]: 
1)  Start with one initial model of cement rotary kiln, 
2)  Find worst Locally Linear Model that has maximum local    
     loss function. 
3)  Check all hyper-rectangles to split (through). 
     (3a) Construction of the multi-dimensional fuzzy  
             membership functions for both hyper rectangles. 
     (3b) Construction of all validity functions. 
     (3c) Local estimation of the rule consequent parameters  
             for both newly generated LLMs. 
     (3d) Calculation of the loss functions for the current  
             overall model. 
4)  Find best division (the best of the alternatives checked in  
     Step 3, and increment the number of LLMs: M → M+1). 
5) Test for convergence. 

 
 Fig. 8 Operation of the LOLIMOT algorithm in the first five 

Iterations for a two-dimensional input space [10]. 
 
As shown in Fig. 9, the optimal number of neurons for the 

first LLNF network, which has back end temperature as 
output, is two. More neurons do not affect significant 
reduction of error. It shows that a LLNF with two neurons can 
model the plant adequately.  
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Fig. 9 Error on train and test data respect to different number of 
neurons 

    D.  Determining Inputs for Network 
One of the important factors in network operation is to 

select proper inputs; if the inputs do not have enough 
information and dynamism, identification process will fail. In 
order to determine the proper inputs of the network, it is 
necessary to know that each input has its own particular 
duration of effect on the output. This is a problem that we 
have during the identification process. With regards to the 
pre-knowledge about the kiln properties, the range of inputs 
dynamism is obtained then through trial and error during 
identification, the best number of input and output dynamics 
are obtained. The best numbers of dynamics used for 
identification are presented in table 4. 

 
TABLE IV THE BEST NUMBER OF DYNAMICS FOR THE INPUTS AND OUTPUTS 

 Number of  Dynamics 
Variable Ka CO BE Pre 

Mat 2 2 5 5 
Fuel 2 2 3 2 
Ks 2 2 2 3 
Fan 2 3 11 4 
Ap 2 4 3 2 
Ka 2 - - - 
CO - 7 - - 
BE - - 10 - 
Pre - - - 11 
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E.  The Result of Identification Models in Cement Rotary 
kiln 

In reference to the previous sections and the contribution 
from the final process data, eight Nonlinear LLNF models for 
four kiln outputs have been obtained. The first four models 
relate to prediction kiln outputs model. Figures 10 to13 show 
model output and real output from MISO1 to MISO4 for test 
data with prediction identification. The second four relate to 
simulator kiln outputs model. Figures 14 to 17 show model 
output and real output from MISO1 to MISO4 for test data 
with simulation identification.  
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Fig. 10 Comparing between Prediction model and Real data for  

Kiln ampere output (5 min prediction horizon) 
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Fig. 11 Comparing between Prediction model and Real data for 

 CO content output (5 min prediction horizon) 
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Fig. 12 Comparing between Prediction model and Real data for  

Back End temperature output (10 min prediction horizon) 
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Fig. 13 Comparing between Prediction model and Real data for 

 Pre-heater temperature output (10 min prediction horizon) 
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Fig. 14 Comparing between Simulation model and Real data for  

Kiln ampere output  
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Fig. 15 Comparing between Simulation model and Real data for  

CO content output 
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Fig. 16 Comparing between Simulation model and Real data for  

Back End temperature output 
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Fig. 17 Comparing between Simulation model and Real data for  

Pre heater temperature output 
 

For different operation between two models we calculate 
root mean square error (RMSE) for test data which are shown 
in table 5. 

TABLE V ROOT MEAN SQUARE ERROR (RMSE) 
Method Ka CO BE Pre 

Simulation 0.00236 0.01192 0.00027 0.00050 
1  min Prediction 0.00124 0.00222 0.00003 0.00003 
5  min Prediction 0.00427 0.02389 0.00092 0.00190 
10 min Prediction 0.00975 0.05161 0.00456 0.01028 
15 min Prediction 0.01633 0.06930 0.00974 0.02229 
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As you can see in table 5, the predictor model for one step 
prediction has less error than simulator model. However, as it 
was mentioned before, the simulator model could simulate 
kiln behavior after training without the need of real kiln 
output data, but only by applied inputs to this model. It is 
impossible to use prediction model for this purpose. This 
advantage of simulator model allows for utilizing the obtained 
locally linear model parameters for designing local 
controllers. 

Here, we observe that an increase in prediction horizon 
increases the error in modeling. This increase of error for ten 
minutes prediction is between 2 to 7 percent. This means that 
with respect to the fastest time constant( three minutes in kiln) 
accompanied with the previously  obtained predictor models; 
it is possible to predict the output for the  fastest settling time 
with more accuracy within 10 percent of output that is 
acceptable rate for fault detection. 

V. CONCLUSION 
In this paper, identification of nonlinear predictor and 

simulator models by LLNF technique for cement rotary kiln is 
discussed and presented. In kiln identification, suitable 
sampling time, noise elimination, data normalization and 
inputs channels delay estimation are essential. In other words, 
without proper selection of parameters, identification will not 
be accurate. After the preprocessing on the data and obtaining 
a rich data set,  two nonlinear predictor and simulator models 
for all the kiln outputs by LLNF and LOLIMOT algorithm are 
presented. The simulator model for cement rotary kiln is 
presented for the first time. Also, the predictor model with 
accuracy rate in fifteen minutes prediction horizon for all the 
kiln outputs is presented. The result shows that predictor 
model can be used for fault detection. Furthermore, the 
accuracy of simulator models can be applied in simulation and 
designing of model-based controllers.   
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