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Identification of an Mechanism Systems 
 by Using the Modified PSO Method 
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Abstract—This paper mainly proposes an efficient modified 
particle swarm optimization (MPSO) method, to identify a slider-
crank mechanism driven by a field-oriented PM synchronous motor. 
In system identification, we adopt the MPSO method to find 
parameters of the slider-crank mechanism. This new algorithm is 
added with “distance” term in the traditional PSO’s fitness function to 
avoid converging to a local optimum. It is found that the comparisons 
of numerical simulations and experimental results prove that the 
MPSO identification method for the slider-crank mechanism is 
feasible. 

Keywords—Slider-crank mechanism, distance, system 
identification, modified particle swarm optimization. 

I. INTRODUCTION 
 slider-crank mechanism is widely used in gasoline and 
diesel engines, and has been studied extensively in the 

past three decades. The responses of the system found by 
Viscomi and Ayre [1] are to be dependent upon the five 
parameters as the length, mass, damping, external piston force 
and frequency. The steady-state responses of the flexible 
connecting rod of a slider-crank mechanism with time-
dependent boundary effect were obtained by Fung [2]. A 
slider-crank mechanism with constantly rotating speed was 
controlled by Fung et al. [3], where the system is actuated by a 
field-oriented control permanent magnet (PM) synchronous 
servomotor.  

Particle swarm optimization (PSO) is a stochastic 
population based optimization approach, and was first 
published by Kennedy and Eberhart in 1995 [5,6]. PSO has 
been shown to be an efficient, roust and simple optimization 
algorithm. In this paper, a modified PSO algorithm is proposed 
to improve the searching ability and prevent from being 
trapped in a local optimum. The main difference of the MPSO 
from the PSO is its fitness function considers the “distance” to 
avoid converging to a local optimum. From these empirical 
studies it can be concluded that the MPSO is sensitive to 
control parameter choices. 

This study successfully demonstrates that the dynamic 
formulation can give a wonderful interpretation of a slider-
crank mechanism in comparison with the experimental results. 
Furthermore, a new identified method using the MPSO is 
proposed, and it is confirmed that the method can perfectly 
searches the parameters of the slider-crank mechanism driven 
by a servomotor through the numerical simulations and 
experimental results. 
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II. DYNAMIC MODELING 
Figure 1 shows the physical model of a slider-crank 

mechanism, where the mass center and the radius of the rigid 
disk are denoted as point “ O ” and length “ r ”, respectively. 
And “ l ” is denoted as the length of the connected rod AB . 
The angle   is between OA  and the X-axis, while the angle 
  is between the rod AB  and the X-axis. In OXY plane, the 
geometric positions of gravity centers of rigid disk, connected 
rod, and slider, respectively, are as follows: 
 
 00 11  cgcg ,     yx                                                           (1) 

  sin
2
1       ,cos

2
1cos 22 lylrx cgcg                 (2) 

 .0coscos 33  cgcg ,     ylθrx                                   (3) 
 
The mechanism has a constrained condition as follows 
  

.sinsin  lr                                                                (4) 
 
The angle   can be found from Eq. (4) as 
 

 .sinsin 1 





  θ

l
r                                                           (5) 

 
By taking account of the control force and constraint force, 
the equation in the matrix form can be obtained as 
 
        A

Q QλQQQQ  T,                                      (6) 
 
where M(Q),  )QN(Q,  , λΦT

Q
 and AQ  can be seen in the 

Appendix A. 
 

 
Fig. 1  The physical model of a slider-crank mechanism 

2.2 Decouple the differential equations 
In the dynamic analysis, the partitioning method [3,4] is 

employed, and the partitioning coordinate vector is selected as 
 

A 
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       TTTT qpQQQQ 321                                    (7) 

 
where  T

mppp 21p  and  Tkqqq 21q  

are the m dependent and k  independent coordinates, 

respectively. The m  constraint equations are  
      .0q p,ΦΦ(Q)                                                             (8) 
Numerical method may be used to solve the set of nonlinear 
algebraic equation (8). If the m  constraint equations are 
independent, the existence of a solution p for a given q can be 
asserted by an implicit function theory. 
  Decomposing Q  into p  and q , the system equations 
become 
 
    pp

p
pqpp Q=λ+q+p  T                                   (9a) 

    qq
q

qqqp Q=λ+q+p  T                                   (9b) 

γ=q+p qp                                                            (9c) 

By using equations (9a) and (9c) and eliminating λ  and p  
yields 
       qpQλ pqpppp

p  
1T                         (10) 

     qΦγΦp qp   1                                                              (11) 
Equations (9b), (10) and (11) can be combined in the matrix 
form as 
 
    F)q(q,Nq(q)M ˆˆˆ                                                            (12) 
where 
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pq
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Equation (12) is a set of differential equations with only one 
independent generalized coordinate vector  q . It is seen 
that the entries of M̂ , N̂  and F̂  of Eq. (12) has two 
independent variables   and  . By using Eq. (4) and its time 
derivative, we could derive the equation with only one 
independent variable   as follows 
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222 sinrlc                                                   (19) 
The system becomes an initial value problem and can be 
directly integrated by using the fourth order Runge-Kutta 
method. 

III. MODIFIED PARTICLE SWARM OPTIMIZATION 
3.1 Particle swarm optimization 

Birds (particles) flocking optimizes a certain objective 
function in a PSO system. Each agent knows its best value so 
far (pbest) and its position. This information is analogy of 
personal experiences of each agent. Moreover, each agent 
knows the best value so far in the group (gbest) among pbests. 
This information is analogy of knowledge of how the other 
agents around them have performed. The PSO concept [5-6] 
consists of changing the velocity of each particle toward its 
pbest and gbest locations. In the PSO, each particle moves to 
a new position according to new velocity and the previous 
positions of the particle. This is compared with the best 
position generated by previous particles in the fitness function, 
and the best one is kept; so each particle accelerates in the 
direction of not only the local best solution but also the global 
best position. If a particle discovers a new probable solution, 
other particles will move closer to it to explore the region 
more completely in the process. 

In general, there are three attributes, current position jx , 

current velocity jv  and past best position jpbest , for 
particles in the search space to present their features. Each 
particle in the swarm is iteratively updated according to the 
aforementioned attributes. For example [5-11], the jth particle 
is represented as xj = (xj,1, xj,2,…, xj,g) in the g-dimensional 
space. The best previous position of the jth particle is 
recorded and represented as pbestj = (pbestj,1, pbestj,2,…, 
pbestj,g). The index of best particle among all particles in the 
group is represented by the gbestg. The rate of the position 
change (velocity) for particle j is represented as vj = (vj,1, 
vj,2,…, vj,g). The modified velocity and position of each 
particle can be calculated using the current velocity and 
distance from pbestj,g to gbestj,g as shown in the following 
formulas[11]: 
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mgnj ,,2,1;,,2,1    
where n is the number of particles in a group; m is the number 
of members in a particle; t is the pointer of iterations 
(generations); )(

,
t
gjv  is the velocity of the particle j at iteration 

t, max)(
,

min
g

t
gjg VvV  ; w is the inertia weighting factor; 1c , 

2c  are the acceleration constants; Rand(), Rand*() are random 

numbers between 0 and 1; )(
,
t
gjx  is the current position of 

particle j at iteration t; pbestj is the pbest of particle j; gbestg is 
the gbest of the group g. 

In the above procedures, the parameter max
gV determine the 

resolution or fitness, with which regions are searched between 
the present position and the target position. If max

gV  is too 

high, particles might fly past good solutions. If max
gV  is too 

low, particles may not explore sufficiently beyond local 
solutions. 

The constants 1c  and 2c  represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
pbest and gbest positions. Low values allow particles to roam 
far from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward or 
past target regions. 

Suitable selection of inertia weighting factor w  provides a 
balance between global and local explorations, thus requiring 
less iteration on average to find a sufficiently optimal solution. 
As originally developed, w  often decreases linearly from 
about 0.9 to 0.4 during a run. In general, the inertia weighting 
factor w  is set according to the following equation [6][9]: 

         iter
iter

wwww 



max

minmax
max                            (21) 

where maxiter  is the maximum number of iterations 
(generations), and iter  is the current number of iterations. 
 
3.2 Modified particle swarm optimization 

The main point of the MPSO differs from the PSO is to 
consider the “distance” in its fitness function to avoid 
converging to a local optimum. Assign a rank (i.e., the 
number place 1, 2, 3, …, etc.) kRE to the calculated error of 

each new individual, kv , PSk ,,1 , PS  is the 
population size. A combined population with PS2  
individuals is formed. Unlike previously developed statistic 
methods, the concept of “distance” is added to the fitness 
function to prevent from being trapped in a local minimum. 
The fitness score of the kth individual is modified by [12,13] 

 
kkk RDREF   ,  PSk  2,,1 .                      (22) 

where   is an adaptive decay scale, max  is set as 0.7 and 

min  is set as 0.005 in this paper. kRD  is the rank of kD  
assigned to the kth individual, where kD  is the distance from 
the individual to the current best solution vector, and is given 
by 

bestkk vvD                                                   (23) 

where kv  is the vector of the kth individual in the combined 

population, and bestv  is the current best solution vector. 

An adaptive scheme is defined as [12] 
maxminmax /)( gR                              (24) 


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and 
min)1(  g ;  if min)(   g                         (26) 

where   is the step size; minF  is the minimum value of 
fitness functions; R  is the regulating scale and is set as 1.25 
in this paper, and maxg  is the maximum allowable number of 
iterations. 

Individuals will be ranked in ascending according to their 
fitness scores by a sorting algorithm. The PS individuals are 
transcribed along with their fitness for the next generation. If 
the new population does not include the current best solution, 
the best solution must be replaced with the last individual in 
the new population. In addition, a gradually decreased decay 
scale can satisfy a successive statistic searching process by 
first using the diversification (bigger  ) to explore more 
regions, and then the intensification (smaller  ) to exploit 
the neighborhood of an elite solution. The current best 
solution (point A) for a minimum fitness problem as shown in 
the Fig. 2 may not reach the global optimum [12,13], and 
there are three electable solutions exist. Generally, solutions 
with slightly better fitness (point C or B) prevailed, so the 
solution trapped into the valley prematurely. The more 
attractive solution (point G) is relatively far away from point 
A, but it nears the global optimal. To prevent prematurity, 
point G with slightly worse fitness than C, it needs a higher 
rank to be selected. That is, a higher kRD  is awarded to a 
longer kD . 
 

 
Fig. 2 The concept of distances 
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Stopping Criteria: Stopping criteria is given in the 
following order: 

1) maximum allowable number of iterations reached. 
2) number of iterations reached without improving the 

current best solution. 
Fig. 3 shows the flow chart of the proposed algorithm. 
 

 
Fig. 3 The flow chart of the MPSO 

 

3.3 Parameter identifications 
How to define the fitness function is the key point of the 

MPSO, since the fitness function is a figure of merit, and 
could be computed by using any domain knowledge. In this 
paper, we adopt the fitness function as follows [14,15]: 





n

i
iEparametersF

1

2)(                                           (27) 

)()( ii
i xxE                                                         (28) 

where n  is the total number of samples and iE  is the 

calculated error of the i th sampling time, *( )ix  is a solution 
by using the fourth-order Runge-Kutta method to solve the 
dynamic Equations (12) for the PM synchronous servomotor 
drive coupled with a slider-crank mechanism with the 
parameters identified from these two methods, and ( )ix  is the 
displacement measured experimentally at the i th sampling 
time. 

IV. COMPARISONS BETWEEN PSO AND MPSO METHODS 
The physical model of the slider-crank mechanism driven 

by a servomotor. In the parameter identification, we utilize the 
MPSO and PSO methods to identify the 5 parameters 1m 、

2m 、 3m 、 r and l  simultaneously, and the fitness function is 
described as Eq. (27). The identified results are given in 

Table1. 
 

TABLE I 
The identified parameters of the numerical simulations 

 
 

Figure 4 shows the convergence characteristics in PSO and 
MPSO methods of the slider-crank mechanism system. It is 
seen from Fig. 4 that the proposed MPSO method is superior 
to the PSO method. 

 
Fig. 4 Comparison of convergence characteristics in PSO and MPSO 

methods of the slider-crank mechanism system 
 

V. CONCLUSIONS 
The dynamic formulations of a slider-crank mechanism 

driven by a field-oriented PM synchronous motor have been 
successfully formulated with only one independent variable. 
Furthermore, the main objective of this study is to utilize PSO 
and MPSO methods to identify a slider-crank mechanism 
driven by a servomotor. According to the comparisons 
between identified results and displacement errors, it is found 
that MPSO method has the best matching with the 
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experimental results. 

 It is concluded that the implementations of MPSO are 
different from the PSO in five aspects. Firstly, its fitness 
function considers the distance to avoid converging to a local 
optimum. Secondly, for the MPSO, vectors with good enough 
fitness scores would be used as candidates to create new 
solutions. Thirdly, it has the advantage of the MPSO to 
conquer various constraints without using the fitness function 
with penalties, and can perform better. Fourthly, the solution is 
coded with a decimal representation, and saves computer 
memory. Finely, the gradually decaying parameters can satisfy 
a successive statistic searching process by first using the 
diversification (bigger parameters) to reserve the larger 
attractive region. Then, the intensification (smaller parameters) 
used to search the small neighborhood of an elite solution. 

APPENDIX A 
We can obtain the Euler-Lagrange equation as follows 
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and λ  is the Lagrange multiplier. 
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