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Identification of a PWA model of a batch reactor
for model predictive control

Gorazd Karer Igor Škrjanc Borut Zupančič

Abstract—The complex hybrid and nonlinear nature of many
processes that are met in practice causes problems with both structure
modelling and parameter identification; therefore, obtaining a model
that is suitable for MPC is often a difficult task. The basic idea
of this paper is to present an identification method for a piecewise
affine (PWA) model based on a fuzzy clustering algorithm. First we
introduce the PWA model. Next, we tackle the identification method.
We treat the fuzzy clustering algorithm, deal with the projections of
the fuzzy clusters into the input space of the PWA model and explain
the estimation of the parameters of the PWA model by means of a
modified least-squares method. Furthermore, we verify the usability
of the proposed identification approach on a hybrid nonlinear batch
reactor example. The result suggest that the batch reactor can be
efficiently identified and thus formulated as a PWA model, which
can eventually be used for model predictive control purposes.

Keywords—Batch reactor, fuzzy clustering, hybrid systems, iden-
tification, nonlinear systems, PWA systems.

I. INTRODUCTION

Dynamic systems that involve continuous and discrete states
are called hybrid systems. Most industrial processes con-
tain both continuous and discrete components, for instance,
discrete valves, on/off switches, logical overrides, etc. The
continuous dynamics are often inseparably interlaced with the
discrete dynamics; therefore, a special approach to modelling
and control is required. At first this topic was not treated
systematically [20]. In recent years, however, hybrid systems
have received a great deal of attention from the computer
science and control community.

Model predictive control (MPC) presents one of the ad-
vanced approaches that is widely used in industrial practice. At
first, MPC was only employed in the petrochemical industry,
but it has been constantly gaining a reputation of a generally
usable approach for a wide spectrum of control problems.
Lately, MPC has not been limited only to slow processes,
where there is plenty of time for calculations between suc-
cessive time-steps, but it has also been gaining ground in
the field of fast processes. That said, when dealing with
control problems involving complex dynamics, computational
complexity still remains the main issue. MPC is based on
forecasting the future behavior of a system at each sampling
instant using the process model. The complex hybrid and
nonlinear nature of many processes that are met in practice
causes problems with both structure modelling and parameter
identification; therefore, obtaining a model that is suitable for
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MPC is often a difficult task. Hence, the need for special
methods and formulations when dealing with hybrid systems
is very clear.

MPC methods for hybrid systems employ several model
formulations. Often the system is described as mixed logical
dynamical (MLD) [4]. A lot of interest has also been devoted
to piecewise affine (PWA) formulation [17], which has been
proven to be equivalent to many classes of hybrid systems
[6]. What is more, MLD models can be transformed to the
PWA form. The optimal control problem for discrete-time
PWA systems can be converted to a mixed-integer optimization
problem and solved online [10]. On the other hand, in [9] the
authors tackle the optimal control problem for PWA systems
by solving a number of multi-parametric programs offline. In
such manner, it is possible to obtain a solution in the form of
a PWA state feedback law that can be efficiently implemented
online.

The aforementioned methods mainly consider systems with
continuous inputs, despite the fact that solutions based on
(multiparametric) mixed integer linear/quadratic program-
ming (mp-MIQP/MILP) can be applied to systems with dis-
crete inputs as well. However, the computational complexity
increases drastically with the number of discrete states, and so
these methods can become computationally too demanding.
An algorithm for the efficient MPC of hybrid systems with
discrete inputs only is proposed in [13].

Most of the previous work related to the MPC of hybrid
systems is based on (piecewise) linear and equivalent mod-
els. However, such approaches can prove unsuccessful when
dealing with distinctive nonlinearities. Since a PWA formu-
lation can only represent piecewise affine systems, further
segmentation is required in order to suitably approximate
the nonlinearity. The new segments introduce new discrete
auxiliary variables in the MILP/MIQP optimization program,
which causes a higher complexity, often resulting in programs
that are computationally too demanding.

A nonlinear modelling approach for MPC purposes is pre-
sented in [16]. The authors introduce an analytical predictive-
control-law for fuzzy systems. The modelling and identifi-
cation methodology is usable for plain nonlinear systems,
but not for the structurally more complex class of hybrid
systems. A hierarchical identification of a fuzzy switched
system [21] is introduced in [11]. Furthermore, two structure-
selecting methods for nonlinear models with mixed discrete
and continuous inputs are presented in [5]. In [14] a fuzzy
control method is implemented in the low control-level for a
class of hybrid systems based on hybrid automata. The authors
in [15] base the demand prediction on a fuzzy clustering
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algorithm, which results in appropriate call probabilities for
uncertain future.

The basic idea of this paper is to present an identification
method for a PWA model based on a fuzzy clustering algo-
rithm. The outline of the paper is as follows. Section II intro-
duces the PWA model. Next, in section III the identification
method is explained. We verify the usability of the proposed
identification approach on a nonlinear hybrid batch reactor
example in section IV. Finally, we give some concluding
remarks.

II. MODELLING OF A PWA MODEL

In the literature that deals with hybrid systems (particularly
predictive control of hybrid systems) a lot of attention has
been devoted to piecewise affine (PWA) models [17]. In
PWA models the input-state space is partitioned into several
subspaces. In every subspace the dynamics of the modelled
system are described by an affine system. In this regards,
PWA models represent one of the simplest formulations, which
in a way generalize the classic linear-system formulation in
the state-space domain – see eq. (1) – and are capable of
describing the hybrid and nonlinear dynamics to a theoretically
arbitrary precision. In addition, the PWA models can be
transformed into several other formulations under in reality
not very limiting conditions [6], [3], [12].

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(1)

In eq. (1), x(k) ∈ R
n denotes the state of the system, u(k) ∈

R
m stand for the input of the system and y(k) ∈ R

l for the
output of the system. k denotes the current time-step. The
matrices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

l×n and D ∈ R
l×m

define the dynamics of the linear system.
By generalizing the discrete-time linear-system formulation

in eq. (1), we can derive the PWA formulation as given in eqs.
(2) and (3).

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
(2)

[
x(k)
u(k)

]
∈ Ωi (3)

In eq. (2), x(k) = [xc(k)
Txb(k)

T ] denotes the state of the
system. Here, xc(k) represents the continuous part of the state
and xb(k) the binary part of the state. Similarly, the input
of the system u(k) = [uc(k)

Tub(k)
T ] and the output of the

system y(k) = [yc(k)
T yb(k)

T ] are divided into the continuous
and the binary part.

The matrices Ai, Bi, Ci and Di and the vectors fi and
gi define the affine dynamic in a particular subspace of the
system, which is denoted by the index i ∈ Z < ∞. In case
the vectors fi and gi are 0, we are dealing with a piecewise
linear system.

The dimensions of the matrices and vectors are defined in
eqs. (4), (5) and (6).

xc(k) ∈ R
nc , xb(k) ∈ {0, 1}nb

uc(k) ∈ R
mc , ub(k) ∈ {0, 1}mb

yc(k) ∈ R
lc , yb(k) ∈ {0, 1}lb

(4)

Ai ∈ (Rnc × {0, 1}nb ) × (Rnc × {0, 1}nb)

Bi ∈ (Rnc × {0, 1}nb) × (Rmc × {0, 1}mb )

Ci ∈ (Rlc × {0, 1}lb ) × (Rnc × {0, 1}nb )

Di ∈ (Rlc × {0, 1}lb ) × (Rmc × {0, 1}mb )

(5)

fi ∈ R
nc × {0, 1}nb

gi ∈ R
lc × {0, 1}lb

(6)

A particular subspace Ωi ⊂ (Rnc × {0, 1}nb) × (Rmc ×
{0, 1}mb) in eq. (3) represents a convex polyhedron in the
input-state space of the system. Each polyhedron is defined
by a system of linear inequalities in the input-state space of
the system as shown in eq. (7).

Ωi ≡
{[

x(·)
u(·)

]
;
Hix(·) + Jiu(·) ≤ Ki,

H̃ix(·) + J̃iu(·) < K̃i

}
(7)

In eq. (7) Hi, Ji, Ki and H̃i, J̃i, K̃i denote the matrices that
define the subspace Ωi. the number of rows in the matrices
equals the number of the inequalities, i.e. the number of
hyperplanes delimiting the subspace Ωi.

It should be noted that in practice, due to numerical prob-
lems in defining the polyhedra using the inequalities above, <
is substituted with ≤. In this case, the polyhedra are defined
as shown in eq. (8), where ε ∈ R

+ stands for a small positive
number chosen according to the numerical accuracy of the
algorithm.

Ωi ≡
{[

x(·)
u(·)

]
;
Hix(·) + Jiu(·) ≤ Ki,

H̃ix(·) + J̃iu(·) ≤ K̃i + ε

}
(8)

III. IDENTIFICATION OF A PWA MODEL

A. Fuzzy clustering

When identifying PWA models we often have to face the
fact that we do not know the dynamics of the system well
enough to determine the suitable input-state space partitions,
which make up the basis of the PWA model. This means that
we do not know the suitable polyhedra, which is a prerequisite
for estimating the parameters of the PWA model. In such a
case we can make use of fuzzy clustering algorithms, such as
fuzzy c-means clustering.

Fuzzy clustering is carried out over the input-output space
of the PWA model in order to partition the identification data
into several fuzzy clusters. Every single piece of identification
data, i.e., a point in the input-output space of the PWA
model, is a member of a particular fuzzy cluster with a
certain membership degree, which is calculated according to
the distance of the point from the centers of the fuzzy clusters,
which are determined in every step of the algorithm.

The fuzzy c-means clustering is based on the minimization
of a criterion given in eq. (9).

JMR =

N∑
i=1

C∑
j=1

μm
ij ‖xi − cj‖2 (9)
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In eq. (9), m represents a predefined real number that
satisfies the following inequality: 1 ≤ m < ∞. N stands for
the number of pieces of identification data, i.e., the number
of points in the input-output space of the PWA model; C
denotes the number of clusters, μij represents the value of
the membership function of cluster j for the ith data point x i.
cj denotes the center of cluster j; ‖ · ‖ is the norm, which
defines the degree of dissimilarity between the center of the
cluster cj and the data point xi.

Usually, the Euclidean norm is used, as given in eq. (10).

‖x‖ =
√
xT · x (10)

Fuzzy clustering is conducted iteratively: in every step of
the algorithm the values of the membership functions μ ij and
the centers of the clusters cj are calculated, as shown in eqs.
(11) and (12), respectively.

μij =
1

∑C
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

,

so that for every i ∈ {1, . . . , N} holds
C∑

j=1

μij = 1.

(11)

cj =

∑N
i=1 μ

m
ij · xi∑N

i=1 μ
m
ij

(12)

In eqs. (11) and (12), i denotes the index of a particular
point in the identification data; j and k stand for the index
of a particular fuzzy cluster and its center, respectively. The
value of the parameter m defines the fuzzyness or. crispness of
the distribution of the fuzzy membership functions in space.

In the extreme case that the parameterm is set to m = 1, the
membership functions degenerate into crisp degrees of mem-
bership. The range of the membership functions is therefore
limited to two values only: μij ∈ {0, 1}. From eq. (11) we
can see that the value μij = 1 if the norm ‖xi − cj‖ for the
ith identification point and the cluster center j is the smallest
comparing to the other centers of clusters. As for the other
clusters, the value μik = 0, where k ∈ {1, 2, . . . , C}\j.

On the other hand, in the the extreme case that the parameter
m is set to m = ∞, the membership functions degenerate
into completely fuzzy degrees of membership. The values of
the membership functions are equal across the whole space:
μij =

1
C for every j ∈ {1, 2, . . . , C}.

Usually, the parameter m is set to either m = 1.25 or m =
2.

The fuzzy c-means clustering algorithm can be described
with the following steps.

1) Set the number of clusters C and the parameter m and
establish the initial membership matrix Υ(0) = [μij ].

2) In kth iteration determine the centers of the clusters c j
for j = 1, . . . , C according to Υ(k).

3) Calculate the new membership matrix Υ(k + 1).
4) If ‖Υ(k+1)−Υ(k)‖ < ε stop the algorithm, otherwise

continue from step 2.

B. Estimation of the parameters by means of a modified least-
squares method

A fuzzy system with a common consequence structure can
be expressed as a global linear model. The input-dependent
parameters are given in eq. (14), where β(k) represents the
normalized degrees of fulfilment (for details see [7]).

ŷp(k + 1) = Θ̃(k)T ψ(k) (13)

Θ̃(k) = Θ(k) β(k)T (14)

The regression matrix Ψjd for the rule Rjd in eq. (15) is
obtained by using the whole set of input data for the hybrid
fuzzy system. Here, index k runs from k1 to kPjd, where Pjd

denotes the number of input-output data pairs corresponding
to the rule Rjd.

However, only data from time-steps k that comply with the
conditions in eqs. (16) and (17) are actually used for con-
structing the regression matrix Ψjd. Here, δ denotes a small
positive number. Since the model parameters are obtained by
matrix inversion (described later in this section), compliance
with eq. (17) is essential for obtaining suitably conditioned
matrices.

Ψjd =

⎡
⎢⎣

βj(k1) ψ
T (k1)

...
βj(kPjd) ψ

T (kPjd)

⎤
⎥⎦ (15)

q(k) = d (16)

βj(k) ≥ δ (17)

The output variable of the system y is included in the output
data vector Yjd, which corresponds to the rule Rjd, as written
in eq. (18). Again, only data from time-steps (k + 1) that
comply with the conditions in eqs. (16) and (17) are actually
used for constructing the output data vector Y jd.

Yjd =

⎡
⎢⎣

βj(k1) y(k1 + 1)
...

βj(k1) y(kPjd + 1)

⎤
⎥⎦ (18)

The output contribution ŷ jdp (k+1) corresponding to the rule
Rjd is written in eq. (19).

βj(k1) ŷ
jd
p (k + 1) = ΘT

jd (βj(k1) ψ(k)) (19)

According to eqs. (15), (18) and (19), the parameters for the
rule Rjd can be obtained using the least-squares identification
method as written in eq. (20).

Θjd = (ΨT
jdΨjd)

−1ΨT
jdYjd (20)

By calculating the parameters for the whole set of rules R jd;
j = 1, ..., K and d = 1, ..., s, the model is finally established.

The parameters are estimated on the basis of measured
input-output data using the least-squares identification method.
The approach is based on decomposition of the data matrix Ψ
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intoK ·s submatrices Ψjd. Hence, the parameters for each rule
Rjd (j = 1, ..., K and d = 1, ..., s) are calculated separately.
Due to better conditioning of the submatrices Ψjd, compared
to the conditioning of the whole data matrix Ψ, this approach
leads to a better estimate of the hybrid fuzzy parameters, or to
put it in another way, the variances of the estimated parameters
are smaller compared to the classic approach given in the
literature [1], [2], [18], [19].

The described instantaneous linearization generates the pa-
rameters of the global linear model (see eq. (14)), which
depends on the antecedents of the system q(k), y(k), ..., y(k−
n+1), u(k), ..., u(k−m+1). In the case of MPC, the global
linear parameters can be used directly to predict the behavior
of the system. In this case, the controller has to adapt to the
dynamic changes online.

IV. BATCH REACTOR

The presented identification method for systems that can be
formulated as PWA models has been tested on a simulation
example of a real batch reactor [8] that is situated in a
pharmaceutical company and is used in the production of
medicines. The goal is to control the temperature of the
ingredients stirred in the reactor core so that they synthesize
into the final product. In order to achieve this, the temperature
has to follow the reference trajectory given in the recipe
as accurately as possible. In addition, the temperature in
the reactor’s water jacket should be constrained between a
minimum and maximum value. A scheme of the batch reactor
is shown in fig. 1.

TC TH

Tin

kM Φ (1 – kM) Φ

Φ m, c, T

S, λ

mw , cw

Tw

kM Φ
kHkC

T0

Figure 1. Scheme of the batch reactor

The control demands can be achieved using a model predic-
tive control strategy. However, in order to implement such an
approach, a suitable model of the system is needed. Therefore,
we develop a PWA model of the batch reactor using the
proposed identification approach.

A. Modelling and identification

In order to identify the PWA model the batch reactor we
need appropriate input-output signals that enable the estima-
tion of the dynamics of the system. The input signals have
been generated using a pseudorandom generator, whereas the
output signals are represented by the recorded responses of
the system (for detailed information see [7]).

The model of the batch reactor is derived in several steps.

• First, we split the multivariable system into two simpler
subsystems with multiple inputs and a single output
(MISO).

• Taking into account the influence of the outputs on both
subsystems we establish the structure of the submodels
for each subsystem.

• We identify each subsystem using the method described
in section III.

According to heat flows that occur in the batch reactor we
can split the system into two subsystems, which primarily deal
with:

• the temperature in the core of the batch reactor T ;
• the temperature in the water jacket of the batch reactor
Tw.

In this manner we take advantage of the prior knowledge
of the structure of the system: we conduct a sort of a grey-
box identification, which presents a compromise between a
black-box identification and pure theoretical modelling.

The temperature in the core of the batch reactor T depends
only on the heat conduction between the core and the water-
jacket of the batch reactor.

We are therefore dealing with a MISO model as shown in
eq. (21). The regressor consists of the temperature in the water
jacket Tw(k) and in the core T (k) of the batch reactor in the
actual time-step k.

T̂ (k + 1) = f(Tw(k), T (k)) (21)

We assume that the heat flow is proportional to difference
between the temperature in the water jacket Tw(k) and in the
core T (k) of the batch reactor. Hence, we can derive a linear
1st-order model as shown in eq. (22).

T̂ (k + 1) = θT [Tw(k) T (k)]T (22)

After conducting a least-squares estimation we obtain the
following parameters.

θ = [0.0033 0.9967]T (23)

The temperature in the water jacket of the batch reactor
Tw depends on the heat flow between the water jacket and
the core and between the water jacket and the surroundings.
In addition, we have to take into account the heat flow due
to inflow and outflow of the water in the jacket of the batch
reactor.

We are therefore dealing with a MISO model as shown in
eq. (24). The regressor consists of the temperature in the water
jacket Tw(k) and in the core T (k) of the batch reactor and
the input signals, i.e., the position of the mixing valve kM (k)
and the hot- kH(k) and cold-water valves kC(k) in the actual
time-step k.

T̂w(k + 1) = F (Tw(k), T (k), kM (k), kC(k), kH(k)) (24)

Since the dynamics concerning the temperature the water
jacket of the batch reactor Tw(k) involve both hybrid and
nonlinear properties, the submodel will be formulated as a
PWA model.
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A general modelling and identification procedure is intro-
duced in sections II in III. By following the aforementioned
procedures we obtain the following PWA model of the batch
reactor.

The first divison of the input space of the PWA model
D[Tw,T,kM ,kC ,kH ]T is according to the operating mode of the
batch reactor, i.e. according to the position of the on/off valves.

• First mode: the fresh input water is hot (Tin = TH , i.e.
kC(k) = 0 and kH(k) = 1).

• Second model: the fresh input water is cool (T in = TC ,
i.e. kC(k) = 1 and kH(k) = 0).

Next, the remaining input subspaces for each operating
mode of the PWA model D[Tw,T,kM ]T are further partitioned
so that the final model takes into account the nonlinear
dynamics of the system by using several affine models, one for
each partition. Therefore, we obtain suitable convex polyhedra
that cover the whole operating range of the system. Every
particular convex polyhedron defines a partition in which the
dynamics of the system is approximated by an affine model.

The partitioning of is carried out using the fuzzy c-means
clustering algorithm – see section III – over the input-output
space of the PWA model. In such manner we assign a partic-
ular membership value for each cluster to every identification
data point. The membership value is based on the distance of
the identification point from the center of a particular cluster.
The goal is to obtain suitable clusters that can be represented
by affine models and limited by convex polyhedra in the input
space of the PWA model.

Before conducting the clustering, the identification data is
normalized, i.e. scaled so that they are limited to the interval
[0, 1]. The clustering algorithm is carried out in the normalized
input-output space of the PWA model given in eq. (25).

D[T̆w(τ),T̆ (τ),k̆M (τ)]T ×DT̆w(τ+1) ≡ [0, 1]4 (25)

The notation ˘ stands for the normalized space.
In our case the parameter m was set to m = 1, 25.
The clustering algorithm partitions the identification data

according to the input variables Tw(τ), T (τ) and kM (τ) and
the output variable Tw(τ + 1) into fuzzy clusters. The index
τ denotes the time-step of a particular identification point.

The clustering algorithm also defines the centers of the clus-
ters in the normalized space (25) c̆j , where j ∈ {1, 2, . . . , C},
and every identification point is assigned C values of mem-
bership functions. In our case, we define C = 5 fuzzy clusters
for every operating mode.

The centers of the clusters (and the corresponding member-
ship functions) that are returned by the clustering algorithm,
are defined in the input-output space of the PWA model (25).
The membership functions that are defined in such a manner
can be directly used for parameter estimation of a PWA model.
However, such a definition is not usable for predicting the
bahaviour of the system in MPC strategies. When using the
PWA model for prediction, we are not able to determine these
distances, because we are primarily dealing with a vector in
the input space of the PWA model.

Therefore, we have to project the centers of the fuzzy
clusters into the input space of the PWA model D [T̆w,T̆ ,k̆M )]T .

The centers of the fuzzy clusters in the normalized input space
of the PWA model for C = 5 are given in eq. (26). The results
are given for both operating modes:

• the centers from c̆1 to c̆5 for kC = 0 and kH = 1;
• the centers from c̆6 to c̆10 for kC = 1 in kH = 0.

c̆1 = [0, 9495 0, 5507 1, 0000]

c̆2 = [0, 4880 0, 4765 0, 0305]

c̆3 = [0, 6715 0, 6935 0, 0500]

c̆4 = [0, 1148 0, 0980 0, 0053]

c̆5 = [0, 3180 0, 2655 0, 0218]

c̆6 = [0, 3718 0, 5257 0, 0328]

c̆7 = [0, 2180 0, 2939 0, 0279]

c̆8 = [0, 0818 0, 1010 0, 0412]

c̆9 = [0, 0147 0, 1273 1, 0000]

c̆10 = [0, 0562 0, 4671 1, 0000]

(26)

According to the results of the clustering algorithm it
is possible to partition the input space of the PWA model
D[Tw,T,kM ]T into convex polyhedra defined by the separating
hyperplanes1. For every pair of partitions Ωi and Ωj we can
define a separating hyperplane as shown in eq. (27).

(x̆− s̆ij) · n̆ij = 0 (27)

In eq. (27) x̆ denotes a general point in the normalized
input-output space on the separating hyperplane and n̆ ij stands
for the normal vector of the hyperplane. Without losing the
generality we can assume that s̆ij denotes the point on the
separating hyperplane that lies on the straight line between
the centers of the i-h and j-th clusters c̆i and c̆j .
s̆ij and n̆ij can be derived from the centers of the clusters

as showni in eqs. (28) and (29).

s̆ij =
c̆i + c̆j

2
(28)

n̆ij = c̆j − c̆i (29)

In this manner, the input space of the PWA model is divided
into subspaces Ωi as shown in eq. (30). For details see [7].

[Tw(k), T (k), kM (k), kC(k), kH (k)]T ∈ Ωi;

if
Hi Tw(k) + Ji [T (k), kM (k), kC(k), kH (k)]T ≤ Ki

H̃i Tw(k) + J̃i [T (k), kM (k), kC(k), kH (k)]T < K̃i

for i = 1, . . . , 10

(30)

For every partition Ωi of the input space of the PWA model,
we can derive a local affine model as in eq. (31).

Tw(k + 1) = AiTw(k) + Bi

[
T (k)
kM (k)

]
+ fi

for [Tw, T, kM , kC , kH ]T ∈ Ωi

(31)

The membership-function values used in parameter estima-
tion described in section III are obtained from the results of the
fuzzy clustering algorithm. They are based on the distance of

1According to the fact that in this case we are dealing with partitioning
of a 3-dimensional input space D[Tw,T,kM ]T the resulting hyperplanes are
defined in 3 dimensions.
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the identification points from the centers of particular clusters.
The parameters of the PWA model are given in eq. (32).

Ω1 : A1 = 0, 6312; B1 = [0, 0400 1, 7115]; f1 = 22, 4874

Ω2 : A2 = 0, 9257; B2 = [0, 0513 12, 5240]; f2 = 0, 7210

Ω3 : A3 = 0, 9361; B3 = [0, 0384 6, 9758]; f3 = 1, 0316

Ω4 : A4 = 0, 9404; B4 = [0, 0490 19, 3915]; f4 = 0, 1955

Ω5 : A5 = 0, 9277; B5 = [0, 0515 16, 8357]; f5 = 0, 5233

Ω6 : A6 = 0, 9059; B6 = [0, 0630 − 10, 8609]; f6 = 0, 8869

Ω7 : A7 = 0, 9337; B7 = [0, 0468 − 4, 5854]; f7 = 0, 4228

Ω8 : A8 = 0, 9462; B8 = [0, 0359 − 1, 5090]; f8 = 0, 3163

Ω9 : A9 = 0, 6279; B9 = [0, 0404 − 15, 3616]; f9 = 19, 3905

Ω10 : A10 = 0, 6312; B10 = [0, 0400 − 14, 9129]; f10 = 18, 9084

(32)

B. Validation

We have validated the obtained PWA model by comparing
its responses to the responses of the original batch reactor
model. The input signals have been generated using a pseudo-
random generator (for detailed information see [7]). We have
recorded both measurable outputs, i.e., the temperature in the
core T and the temperature in the water jacket of the batch
reactor Tw.

Figure 2 shows a closeup of the trajectory of temperature
in the water jacket of the batch reactor Tw obtained by a
simulation using the PWA model of the batch reactor. The
dotted line represents the original response of the batch reactor
to the input signals.
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Figure 2. The response of the PWA model to the validation input signals
(solid line) and the original response of the batch reactor (dotted line).

For validation purposes, we can calculate the following
parameters that reflect the identification quality.

• The average squared discrepancy of the temperature in
the water jacket of the batch reactor Tw: J̄Tw = 1.2735.

• The average squared discrepancy of the temperature in
the core of the batch reactor T : J̄T = 0.6780.

V. CONCLUSION

The complex hybrid and nonlinear nature of many processes
that are met in practice causes problems with both structure
modelling and parameter identification; therefore, obtaining a
model that is suitable for MPC is often a difficult task. The
PWA model represents a widely used framework for modelling
complex systems for control purposes in practice. However, it

is often difficult to identify a complex nonlinear hybrid system
and formulate it as a PWA model.

The identification method presented in this paper strives to
overcome this obstacle by using a fuzzy clustering algorithm
for identification purposes and project the resulting clusters
defined in the input-output space of the PWA model into the
input space of the PWA model. In this manner, we can obtain
a PWA model suitable for model predictive control purposes.

We verified the identification approach on a hybrid nonlinear
batch reactor example. The result suggest that the batch reactor
can be efficiently identified and formulated as a PWA model,
which can eventually be used in a model predictive control
algorithm.
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[16] I. Škrjanc and D. Matko. Fuzzy predictive functional control in the state
space domain. Journal of Intelligent and Robotic Systems, 31:283–297,
2001.

[17] E. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE
Transactions on Automatic control, 26(2):346–358, 1981.

[18] M. Sugeno and K. Tanaka. Successive identification of a fuzzy model
and its application to prediction of a complex system. Fuzzy Sets and
Systems, 42:315–334, 1991.

[19] T. Takagi and M. Sugeno. Fuzzy identification of systems and its ap-
plication to modelling and control. IEEE Trans. System Man Cybernet.,
15:116–132, 1985.

[20] A. Van der Schaft and H. Schumacher. An introduction to hybrid
dynamical systems. Lecture Notes in Control and Information Sciences,
251:v–vii, 1999.

[21] H. S. Witsenhausen. A class of hybrid-state continuous time dynamic
systems. IEEE Trans. on Automatic Control, 11(2):161–167, 1966.


