I-Vague Normal Groups

Zelalem Teshome Wale

Abstract—The notions of I-vague normal groups with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalize the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0, 1]. Various operations and properties are established.

Keywords—Involutary dually residuated lattice ordered semigroup, I-vague set, I-vague group and I-vague normal group.

I. INTRODUCTION

AGUE groups are studied by M. Demirci[2]. R. Biswas[1] defined the notion of vague groups analogous to the idea of Rosenfeld [4]. He defined vague normal groups of a group and studied their properties. N. Ramakrishna[3] studied vague normal groups and introduced vague normalizer and vague centralizer.

In his paper, T. Zelalem [9] studied the concept of I-vague groups. In this paper using the definition of I-vague groups, we defined and studied I-vague normal groups where I is an involutary DRL-semigroup. To be self contained we shall recall some basic results in [5], [6], [7], [9] in this paper.

II. DUALLY RESIDUATED LATTICE ORDERED SEMIGROUP

Definition 2.1: [5] A system $A = (A, +, \leq, -)$ is called a dually residuated lattice ordered semigroup(in short DRLsemigroup) if and only if

i) A = (A, +) is a commutative semigroup with zero"0"; ii) $A = (A, \leq)$ is a lattice such that

 $a+(b\cup c)=(a+b)\cup(a+c) \text{ and } a+(b\cap c)=(a+b)\cap(a+c) \text{ for all } a,\ b,\ c\in \mathbf{A};$

iii) Given $a, b \in A$, there exists a least x in A such that $b+x \ge a$, and we denote this x by a - b (for a given a, b this x is uniquely determined);

iv) (a - b) \cup 0 + b $\leq a \cup b$ for all a, b \in A;

v) a - a ≥ 0 for all $a \in A$.

Theorem 2.2: [5] Any DRL-semigroup is a distributive lattice.

Definition 2.3: [10] A DRL-semigroup A is said to be involutary if there is an element $1(\neq 0)(0$ is the identity w.r.t. +) such that

(i) a + (1 - a) = 1 + 1;

(ii) 1 - (1 - a) = a for all $a \in A$.

Theorem 2.4: [6] In a DRL-semigroup with 1, 1 is unique.

Theorem 2.5: [6] If a DRL-semigroup contains a least element x, then x = 0. Dually, if a DRL-semigroup with 1 contains a largest element α , then $\alpha = 1$.

Zelalem Teshome: Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia.

Throughout this paper let $I = (I, +, -, \lor, \land, 0, 1)$ be a dually residuated lattice ordered semigroup satisfying 1 - (1 - a) = a for all $a \in I$.

Lemma 2.6: [10] Let 1 be the largest element of I. Then for $a, b \in I$

(i) a + (1 - a) = 1.

(ii) $1 - a = 1 - b \iff a = b$.

(iii)1 - (a \cup b) = (1 -a) \cap (1- b).

Lemma 2.7: [10] Let I be complete. If $a_{\alpha} \in I$ for every $\alpha \in \Delta$, then

(i)
$$1 - \bigvee_{\alpha \in \Delta} a_{\alpha} = \bigwedge_{\alpha \in \Delta} (1 - a_{\alpha}).$$

(ii) $1 - \bigwedge_{\alpha \in \Delta} a_{\alpha} = \bigvee_{\alpha \in \Delta} (1 - a_{\alpha}).$

III. I-VAGUE SETS

Definition 3.1: [10] An I-vague set A of a non-empty set G is a pair (t_A, f_A) where $t_A : G \to I$ and $f_A : G \to I$ with $t_A(x) \le 1 - f_A(x)$ for all $x \in G$.

Definition 3.2: [10] The interval $[t_A(x), 1 - f_A(x)]$ is called the I-vague value of $x \in G$ and is denoted by $V_A(x)$.

Definition 3.3: [10] Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be two I-vague values. We say $B_1 \ge B_2$ if and only if $a_1 \ge a_2$ and $b_1 \ge b_2$.

Definition 3.4: [10] An I-vague set $A = (t_A, f_A)$ of G is said to be contained in an I-vague set $B = (t_B, f_B)$ of G written as $A \subseteq B$ if and only if $t_A(x) \leq t_B(x)$ and $f_A(x) \geq f_B(x)$ for all $x \in G$. A is said to be equal to B written as A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 3.5: [10] An I-vague set A of G with $V_A(x) = V_A(y)$ for all $x, y \in G$ is called a constant I-vague set of G.

Definition 3.6: [10] Let A be an I-vague set of a non empty set G. Let $A_{(\alpha, \beta)} = \{x \in G : V_A(x) \ge [\alpha, \beta]\}$ where $\alpha, \beta \in I$ and $\alpha \le \beta$. Then $A_{(\alpha, \beta)}$ is called the (α, β) cut of the I-vague set A.

Definition 3.7: Let S \subseteq G. The characteristic function of S denoted as $\chi_s = (t_{\chi_s}, f_{\chi_s})$, which takes values in I is defined as follows:

$$\chi_{_S}(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

t

and

$$f_{\chi_S}(x) = \begin{cases} 0 & \text{if } x \in S \\ 1 & \text{otherwise.} \end{cases}$$

 χ_s is called the I-vague characteristic set of S in I. Thus

$$V_{\chi_S}(x) = \begin{cases} [1, 1] & \text{if } x \in S ; \\ [0, 0] & \text{otherwise.} \end{cases}$$

Definition 3.8: [10] Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be I-vague sets of a set G.

(i) Their union $A \cup B$ is defined as $A \cup B = (t_{A \cup B}, f_{A \cup B})$ where $t_{A \cup B}(x) = t_A(x) \lor t_B(x)$ and

e-mail: zelalemwale@yahoo.com or zelalem.wale@gmail.com Manuscript received October xx, 2011; revised January 11, 2007.

 $f_{A\cup B}(x) = f_A(x) \wedge f_B(x)$ for each $x \in G$.

(ii) Their intersection $A \cap B$ is defined as $A \cap B =$ $(t_{A\cap B}, f_{A\cap B})$ where $t_{A\cap B}(x) = t_A(x) \wedge t_B(x)$ and $f_{A\cap B}(x) = f_A(x) \lor f_B(x)$ for each $x \in \mathbf{G}$.

Definition 3.9: [10] Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be I-vague values. Then

(i) $isup\{B_1, B_2\} = [sup\{a_1, a_2\}, sup\{b_1, b_2\}].$

(ii) $\inf\{B_1, B_2\} = [\inf\{a_1, a_2\}, \inf\{b_1, b_2\}].$

Lemma 3.10: [10] Let A and B be I-vague sets of a set G. Then $A \cup B$ and $A \cap B$ are also I-vague sets of G.

Let $x \in G$. From the definition of $A \cup B$ and $A \cap B$ we have (i) $V_{A\cup B}(x) = \text{isup}\{V_A(x), V_B(x)\};$

(ii) $V_{A\cap B}(x) = \inf\{V_A(x), V_B(x)\}.$

Definition 3.11: [10] Let I be complete and $\{A_i: i \in \Delta\}$ be a non empty family of I-vague sets of G where

 $A_i = (t_{A_i}, f_{A_i})$. Then $\begin{array}{l} \text{(i)} & \bigcap_{i \in \Delta} A_i = (\bigwedge_{i \in \Delta} t_{A_i}, \bigvee_{i \in \Delta} f_{A_i}) \\ \text{(ii)} & \bigcup_{i \in \Delta} A_i = (\bigvee_{i \in \Delta} t_{A_i}, \bigwedge_{i \in \Delta} f_{A_i}) \\ \text{Lemma 3.12: [10]} \quad \text{Let I be complete. If } \{A_i: i \in \Delta\} \end{array}$

is a non empty family of I-vague sets of G, then $\bigcap A_i$ and

 $\bigcup A_i$ are I-vague sets of G.

 $i \in \triangle$ Definition 3.13: [10] Let I be complete and

 $\{A_i = (t_{A_i}, f_{A_i}): i \in \triangle\}$ be a non empty family of I vague sets of G. Then for each $x \in G$,

(i) $\operatorname{isup}\{V_{A_i}(x): i \in \Delta\} = [\bigvee_{i \in \Delta} t_{A_i}(x), \bigvee_{i \in \Delta} (1 - f_{A_i})(x)].$ (ii) $\operatorname{iinf}\{V_{A_i}(x): i \in \Delta\} = [\bigwedge_{i \in \Delta} t_{A_i}(x), \bigwedge_{i \in \Delta} (1 - f_{A_i})(x)].$

IV. I-VAGUE GROUPS

Definition 4.1: [9] Let G be a group. An I-vague set A of a group G is called an I-vague group of G if

(i) $V_A(xy) \ge \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$ and (ii) $V_A(x^{-1}) \ge V_A(x)$ for all $x \in G$.

Lemma 4.2: [9] If A is an I-vague group of a group G, then $V_A(x) = V_A(x^{-1})$ for all $x \in G$.

Lemma 4.3: [9] If A is an I-vague group of a group G, then $V_A(e) \ge V_A(x)$ for all $x \in G$.

Lemma 4.4: [9] A necessary and sufficient condition for an I-vague set A of a group G to be an I-vague group of G is that $V_A(xy^{-1}) \ge \inf\{V_A(x), V_A(y)\}$ for all $x, y \in G$.

Lemma 4.5: [9] Let H be a subgroup of G and $[\gamma, \delta] \leq$ $[\alpha, \beta]$ with $\alpha, \beta, \gamma, \delta \in I$ where $\alpha < \beta$ and $\gamma < \delta$. Then the I-vague set A of G defined by

$$V_A(x) = \left\{ egin{array}{cc} [lpha, \ eta] & ext{if } x \in H \ [\gamma, \ \delta] & ext{otherwise} \end{array}
ight.$$

is an I-vague group of G.

Lemma 4.6: [9] Let $H \neq \emptyset$ and $H \subseteq G$. The I-vague characteristic set of H, χ_H is an I-vague group of G iff H is a subgroup of G.

Lemma 4.7: [9] If A and B are I-vague groups of a group G, then $A \cap B$ is also an I-vague group of G.

Lemma 4.8: [9] Let I be complete. If $\{A_i: i \in \Delta\}$ is a non empty family of I-vague groups of G, then $\bigcap A_i$ is an I-vague group of G.

Lemma 4.9: [9] Let A be an I-vague group of G and B be a constant I-vague group of G. Then $A \cup B$ is an I-vague group of G.

Theorem 4.10: [9] An I-vague set A of a group G is an I-vague group of G if and only if for all α , $\beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.

Theorem 4.11: [9] Let A be an I-vague group of a group G. If $V_A(xy^{-1}) = V_A(e)$ for $x, y \in G$, then $V_A(x) = V_A(y)$.

Lemma 4.12: [9] Let A be an I-vague group of a group G. Then $GV_A = \{x \in G : V_A(x) = V_A(e)\}$ is a subgroup of G.

V. I-VAGUE NORMAL GROUPS

Definition 5.1: Let G be a group. An I-vague group A of a group G is called an I-vague normal group of G if for all $x, y \in G, V_A(xy) = V_A(yx).$

If the group G is abelian, then every I-vague group of G is an I-vague normal group of G.

Lemma 5.2: Let A be an I-vague group of a group G. A is an I-vague normal group of G if and only if $V_A(x) =$ $V_A(yxy^{-1})$ for all $x, y \in G$.

Proof: Let A be an I-vague group of a group G.

Suppose that A is an I-vague normal group of G.

Let $x, y \in G$. Then $V_A(x) = V_A(xy^{-1}y) = V_A(yxy^{-1})$ Thus

$$V_A(x) = V_A(xg - g) = V_A(gxg - g)$$
.
 $V_A(x) = V_A(gxg^{-1})$.

Conversely, suppose that $V_A(x) = V_A(yxy^{-1})$ for all $x, y \in G.$

Then $V_A(xy) = V_A(y(xy)y^{-1}) = V_A(yx)$.

We have $V_A(xy) = V_A(yx)$. Hence the lemma follows.

Lemma 5.3: Let H be a normal subgroup of G and $[\gamma, \ \delta] \leq [\alpha, \ \beta]$ for $\alpha, \ \beta, \ \gamma, \ \delta \in I$ with $\alpha \leq \beta$ and $\gamma \leq \delta$. Then the I-vague set A of G defined by

$$V_A(x) = \begin{cases} [\alpha, \ \beta] & \text{if } x \in H \\ [\gamma, \ \delta] & \text{otherwise} \end{cases}$$

is an I-vague normal group of G.

Proof: Let H be a normal subgroup of G. By lemma 4.5, A is an I-vague group of G.

We show that $V_A(x) = V_A(yxy^{-1})$ for every $x, y \in G$. Let $x, y \in G$.

If $x \in H$, then $yxy^{-1} \in H$. Thus $V_A(x) = V_A(yxy^{-1})$. If $x \notin H$, then $yxy^{-1} \notin H$. Thus $V_A(x) = V_A(yxy^{-1})$. Hence $V_A(x) = V_A(yxy^{-1})$ for every $x, y \in G$. Therefore A is an I-vague normal group of G.

Lemma 5.4: Let $H \neq \emptyset$. The I-vague characteristic set of

H, χ_{H} is an I-vague normal group of a group G iff H is a normal subgroup of G.

Proof: Suppose that H is a normal subgroup of G. By Lemma 5.3, χ_{H} is an I-vague normal group of G since

$$V_{\chi_H}(x) = \begin{cases} [1, 1] & \text{if } x \in H \\ [0, 0] & \text{otherwise} \end{cases}$$

Conversely, suppose that χ_{H} is an I-vague normal group of G. We show that H is a normal subgroup of G.

By lemma 4.6, H is a subgroup of G. Let $y \in H$ and $x \in G$.

Vol:5, No:12, 2011

Now we prove that $xyx^{-1} \in \mathbf{H}$.

 $V_{\chi_{H}}(xyx^{-1}) = V_{\chi_{H}}(y) = [1, 1].$ This implies $xyx^{-1} \in \mathbf{H}.$ It follows that H is a normal subgroup of G. Hence the lemma holds true.

Theorem 5.5: If A and B are I-vague normal groups of G, then $A \cap B$ is also an I-vague normal group of G.

Proof: If A and B are I-vague groups of a group G, then $A \cap B$ is also an I-vague group of G by lemma 4.7.

Now it remains to show that $V_{A\cap B}(xy) = V_{A\cap B}(yx)$ for every $x, y \in G$. Let $x, y \in G$. Then

 $V_{A\cap B}(xy) = \inf\{V_A(xy), V_B(xy)\}$

 $= \inf\{V_A(yx), V_B(yx)\}$

 $= V_{A \cap B}(yx).$

Hence $V_{A \cap B}(xy) = V_{A \cap B}(yx)$ for each $x, y \in G$.

Therefore $A \cap B$ is an I-vague normal group of G.

Lemma 5.6: Let I be complete. If $\{A_i: i \in \Delta\}$ is a non empty family of I-vague normal groups of G, then $\bigcap A_i$ is

an I-vague normal group of G.

Proof: Let $A = \bigcap A_i$. Then A is an I-vague group of G by lemma 4.8.

Now we prove that $V_A(xyx^{-1}) = V_A(y)$ for every $x, y \in G$. Let $x, y \in G$. Then V

$$V_A(xyx^{-1}) = \inf\{V_{A_i}(xyx^{-1}): i \in \Delta\}$$

= $\inf\{V_{A_i}(y): i \in \Delta\}$
= $V_A(y)$

Therefore $\bigcap_{i \in \triangle} A_i$ is an I-vague normal group of G.

Lemma 5.7: Let A be an I-vague normal group of G and B be a constant I-vague group of G. Then $A \cup B$ is an I-vague normal group of G.

Proof: Let A be an I-vague normal group of G and B be a constant I-vague group of G. Hence $V_B(x) = V_B(y)$ for all $x, y \in G$. By lemma 4.9, A \cup B is an I-vague group of G. For each $x, y \in G$,

$$V_{A\cup B}(yxy^{-1}) = i\sup\{V_A(yxy^{-1}), V_B(yxy^{-1})\}$$

= isup{ $V_A(x), V_B(x)$ }
= $V_{A\cup B}(x)$

Hence $V_{A\cup B}(yxy^{-1}) = V_{A\cup B}(x)$ for every $x, y \in G$. Therefore $A \cup B$ is an I-vague normal group of G.

Remark Even if $V_{A\cup B}(xyx^{-1}) = V_{A\cup B}(y)$ for I-vague normal groups A and B, $A \cup B$ is not be an I-vague group of G as we have seen in I-vague groups[9].

Theorem 5.8: An I-vague set A of a group G is an Ivague normal group of G if and only if for all α , $\beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a normal subgroup of G whenever it is non-empty.

Proof: By theorem 4.10, an I-vague set A of a group G is an I-vague group of G if and only if for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha,\beta)}$ is a subgroup of G whenever it is non-empty.

Suppose that A is an I-vague normal group of G.

Consider $A_{(\alpha, \beta)}$. Let $y \in A_{(\alpha, \beta)}$ and $x \in G$. We prove that $xyx^{-1} \in A_{(\alpha, \beta)}.$

 $y \in A_{(\alpha,\beta)}$ implies $V_A(y) \ge [\alpha, \beta]$. Since $V_A(y) = V_A(xyx^{-1}), V_A(xyx^{-1}) \ge [\alpha, \beta]$. Hence $xyx^{-1} \in A_{(\alpha, \beta)}$, so $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Conversely, suppose that for all α , $\beta \in I$ with $\alpha \leq \beta$, the non

empty set $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Now it remains to prove that $V_A(y) = V_A(xyx^{-1})$ for all x, $y \in G$. Suppose that $V_A(y) = [\alpha, \beta]$. Then $y \in A_{(\alpha, \beta)}$. Since $A_{(\alpha, \beta)}$ is a normal subgroup of G, $xyx^{-1} \in A_{(\alpha, \beta)}$. It follows that $V_A(xyx^{-1}) \ge [\alpha, \beta] = V_A(y)$ for all $x \in G$. Hence $V_A(xyx^{-1}) \ge V_A(y)$ for all $x \in G$. This implies $V_A(x^{-1}yx) \ge V_A(y)$ for all $x, y \in G$. Put xyx^{-1} instead of y. Hence $V_A(x^{-1}(xyx^{-1})x) \ge V_A(xyx^{-1})$, so $V_A(y) \geq V_A(xyx^{-1})$. Consequently, $V_A(xyx^{-1}) = V_A(y)$ for all $x, y \in G$. Thus A is an I-vague normal group of G. Hence the theorem follows.

Theorem 5.9: If A is an I-vague normal group of G, then GV_A is a normal subgroup of G.

Proof: We prove that GV_A is a normal subgroup of G.

By lemma 4.12, $GV_A = \{x \in G : V_A(x) = V_A(e)\}$ is a subgroup of G. Now we show that $xyx^{-1} \in GV_A$ for $x \in$ G and $y \in GV_A$. Since A is an I-vague normal group of G, $V_A(xyx^{-1}) = V_A(y)$. $y \in GV_A$ implies $V_A(y) = V_A(e)$. Hence $V_A(xyx^{-1}) = V_A(e)$, so $xyx^{-1} \in GV_A$. Thus GV_A is a normal subgroup of G.

Theorem 5.10: If A is an I-vague group of a group G and B is an I-vague normal group of G, then $A \cap B$ is an I-vague normal group of GV_A .

Proof: GV_A is a subgroup of G because A is an I-vague group of G. Since A and B are I-vague groups of G, it follows that $A \cap B$ is an I-vague group of G by lemma 4.7. So $A \cap B$ is an I-vague group of GV_A . Now we prove that $V_{A\cap B}(xy) = V_{A\cap B}(yx)$ for all $x, y \in GV_A$.

Let
$$x, y \in GV_A$$
. Then $xy, yx \in GV_A$. Hence

 $V_A(xy) = V_A(yx) = V_A(e)$. $V_B(xy) = V_B(yx)$ because B is an I-vague normal group of G.

 $V_{A\cap B}(xy) = \inf\{V_A(xy), V_B(xy)\} = \inf\{V_A(yx), V_B(yx)\}$ $= V_{A \cap B}(yx)$. It follows that $V_{A \cap B}(xy) = V_{A \cap B}(yx)$ for every $x, y \in GV_A$. Therefore $A \cap B$ is an I-vague normal group of GV_A .

Theorem 5.11: Let A be an I-vague group of G. Then A is an I-vague normal group of G iff $V_A([x, y]) \ge V_A(x)$ for all $x, y \in G$.

Proof: Let A be an I-vague group of G.

Suppose that A is an I-vague normal group of G.

We prove that $V_A([x, y]) \ge V_A(x)$ for $x, y \in G$. Let $x, y \in G$. Then

 $V_A([x, y]) = V_A(x^{-1}(y^{-1}xy))$ $\geq \inf\{V_A(x^{-1}), V_A(y^{-1}xy)\}$ = $\inf\{V_A(x), V_A(x)\}$ since A is an I-vague normal group of G. $= V_A(x)$

Hence $V_A([x, y]) \ge V_A(x)$.

 V_{\neq}

Conversely, suppose that $V_A([x, y]) \ge V_A(x)$ for all $x, y \in$ G. We prove that A is an I-vague normal group of G. Le

t x,
$$z \in \mathbf{G}$$
. Then
 $I_1(x^{-1}zx) = V_A(ex^{-1}zx)$
 $= V_A(zz^{-1}x^{-1}zx)$
 $= V_A(z[z, x])$
 $\geq \inf\{V_A(z), V_A([z, x])\}$
 $= V_A(z)$ by our supposition.

Hence $V_A(x^{-1}zx) \ge V_A(z)$ for $x, z \in G$. It implies $V_A(xzx^{-1}) \ge V_A(z)$ for $x, z \in G$. Instead of z put $x^{-1}zx$. Then we get $V_A(z) \ge V_A(x^{-1}zx)$.

Vol:5, No:12, 2011

Thus $V_A(z) = V_A(x^{-1}zx)$ for every $x, z \in G$. Therefore A is an I-vague normal group of G.

Hence the theorem follows.

Definition 5.12: : Let A be an I-vague group of a group G. Then the set

 $N(A) = \{a \in G : V_A(axa^{-1}) = V_A(x) \text{ for all } x \in G\}$ is called an I-vague normalizer of A.

Theorem 5.13: Let A be an I-vague group of G. Then (i) A is an I-vague normal group of N(A).

(ii) I-vague normalizer N(A) is a subgroup of G.

(iii) A is an I-vague normal group of G iff N(A)=G.

Proof: Let A be an I-vague group of G.

(i) We prove that A is an I-vague normal group of N(A). Let $x, a \in N(A).$

By definition, $V_A(axa^{-1}) = V_A(x)$ for all $x, a \in N(A)$.

Thus A is an I-vague normal group of N(A). (ii) Let $a, b \in N(A)$. We show that $a^{-1} \in N(A)$ and $ab \in A$

N(A). Let $a \in N(A)$. Then $V_A(axa^{-1}) = V_A(x)$ for all $x \in G$. $V_A(x) = V_A(a(a^{-1}xa)a^{-1}) = V_A(a^{-1}xa).$ Hence $V_A(a^{-1}xa) = V_A(x)$, so $a^{-1} \in N(A).$

Let $a, b \in N(A)$. Then

 $V_A(axa^{-1}) = V_A(x)$ and $V_A(bxb^{-1}) = V_A(x)$ for all $x \in G$. Then $V_A(abx(ab)^{-1}) = V_A(a(bxb^{-1})a^{-1}) = V_A(bxb^{-1}) =$ $V_A(x)$.

Thus $ab \in N(A)$. Therefore N(A) is a subgroup of G. (iii) Suppose that A is an I-vague normal group of G. We prove that N(A) = G.

Let $a \in G$. Since A is an I-vague normal group of G, $V_A(axa^{-1}) = V_A(x)$ for all $x \in G$. It follows that $a \in N(A)$. Hence $G \subseteq N(A)$.

Since $N(A) \subseteq G$, G = N(A).

Conversely, assume that N(A) = G. For all $a, x \in G$,

 $V_A(axa^{-1}) = V_A(x).$

By definition, A is an I-vague normal group of G.

Theorem 5.14: Let A be an I-vague group of a group G. Then GV_A is a normal subgroup of N(A).

Proof: Let A be an I-vague group of G. We prove that GV_A is a normal subgroup of N(A). First we prove that $GV_A \subseteq N(A)$. Let $x \in GV_A$. Then $x \in GV_A$, $V_A(x) = V_A(e)$. For $y \in G$, $V_A(xyx^{-1}) \ge \inf\{V_A(x), V_A(yx^{-1})\}$ $\geq \inf\{V_A(x), V_A(y)\}$ $= \inf\{V_A(e), V_A(y)\}$ $= V_A(y).$

Hence $V_A(xyx^{-1}) \ge V_A(y)$ for $y \in \mathbf{G}$ and $x \in GV_A$. $x \in GV_A$ implies $x^{-1} \in GV_A$. Thus $V_A(x^{-1}yx) \ge V_A(y)$ where $x \in GV_A$ and $y \in G$. Put xyx^{-1} instead of y. We have $V_A(x^{-1}(xyx^{-1})x) \ge V_A(xyx^{-1})$ and hence $V_A(y) \ge V_A(xyx^{-1}).$ Therefore $V_A(y) = V_A(xyx^{-1})$ for each $y \in G$.

Thus $x \in N(A)$. Therefore $GV_A \subseteq N(A)$.

Since GV_A is a subgroup of G and $GV_A \subseteq N(A)$, GV_A is a subgroup of N(A).

Now we show that $yay^{-1} \in GV_A$ for all $a \in GV_A$ and for all $y \in N(A).$

Since $y \in N(A)$, $V_A(yay^{-1}) = V_A(a)$. Since $a \in GV_A$,

 $V_A(a) = V_A(e)$. Hence $V_A(yay^{-1}) = V_A(e)$, so $yay^{-1} \in$ GV_A . Therefore GV_A is a normal subgroup of N(A).

Definition 5.15: Let A be an I-vague group of a group G. Then the set

 $C(A) = \{a \in G : V_A([a, x]) = V_A(e) \text{ for all } x \in G\}$ is called an I-vague centralizer of A.

Theorem 5.16: Let A be an I-vague group of a group G. Then C(A) is a normal subgroup of G.

Proof: Let A be an I-vague group of G. We prove that $C(A) = \{a \in G : V_A([a, x]) = V_A(e) \text{ for all } x \in G\}$ is a normal subgroup of G.

Step(1) We show that $a \in C(A)$ implies $V_A(xa) = V_A(ax)$ for all $x \in G$.

Let
$$a \in C(A)$$
. Then $V_A([a, x]) = V_A(e)$ for all $x \in G$.
 $V_A([a, x]) = V_A(e) \Rightarrow V_A(a^{-1}x^{-1}ax) = V_A(e)$
 $\Rightarrow V_A((xa)^{-1}ax) = V_A(e)$
 $\Rightarrow V_A((xa)^{-1}((ax)^{-1})^{-1}) = V_A(e)$
 $\Rightarrow V_A((xa)^{-1}) = V_A((ax)^{-1})$ by thm 4.11

 $\Rightarrow V_A(xa) = V_A(ax).$

Therefore $V_A(xa) = V_A(ax)$ for all $x \in G$. Step(2) We show that $a \in C(A)$ implies $V_A([x, a]) = V_A(e)$ for all $x \in G$.

 $V_A([x, a]) = V_A(x^{-1}a^{-1}xa) = V_A((x^{-1}a^{-1}xa)^{-1}) =$ $V_A(a^{-1}x^{-1}ax) = V_A([a, x]) = V_A(e)$ Hence $V_A([x, a]) = V_A(e)$ for each $a \in C(A)$ and for all $x \in \mathbf{G}$

Step(3) We prove that C(A) is a subgroup of G. We show that (i) $a \in C(A)$ implies $a^{-1} \in C(A)$.

(ii) $a, b \in C(A)$ implies $ab \in C(A)$.

Now proof of (i)
For all
$$x \in G$$
, $V_A([a^{-1}, x]) = V_A(ax^{-1}a^{-1}x)$
 $= V_A(x^{-1}a^{-1}xa)$ by step (1)
 $= V_A((x^{-1}a^{-1}xa)^{-1})$
 $= V_A(a^{-1}x^{-1}ax)$
 $= V_A([a, x])$
 $= V_A(e).$
Thus $V_A([a^{-1}, x]) = V_A(e)$ for all $x \in G$

Thus $V_A([a^{-1}, x]) = V_A(e)$ for all $x \in G$. Hence we have that $a^{-1} \in C(A)$.

Proof of (ii) Let $a, b \in C(A)$. Then $V_A([a, x]) = V_A([b, x]) =$ $V_A(e)$ for all $x \in G$. $V_A([ab, x]) = V_A((ab)^{-1}x^{-1}(ab)x)$ $= V_A(b^{-1}(a^{-1}x^{-1}abx))$ $=V_A((a^{-1}x^{-1}abx)b^{-1})$ by step(1) $= V_A((a^{-1}x^{-1}ax)(x^{-1}bxb^{-1}))$ $= V_A([a, x][x, b^{-1}]).$ $\geq \inf\{V_A([a, x]), V_A([x, b^{-1}])\}$ = $\inf\{V_A(e), V_A(e)\}$ since $b^{-1} \in C(A)$ $= V_A(e).$ This implies $V_A([ab, x]) \ge V_A(e)$ for all $x \in G$. Since $V_A(e) \ge V_A([ab, x]), V_A([ab, x]) = V_A(e)$ for all $x \in$ G. Hence $ab \in C(A)$.

From (i) and (ii) C(A) is a subgroup of G.

Step(4) Now we show that $g^{-1}ag \in C(A)$ for all $a \in C(A)$ and for all $q \in G$.

That is $V_A([g^{-1}ag, x]) = V_A(e)$ for all $g, x \in G$ and for all $a \in C(A)$.

$$V_A([g^{-1}ag, x]) = V_A((g^{-1}ag)^{-1}x^{-1}g^{-1}agx)$$
$$= V_A(g^{-1}a^{-1}gx^{-1}g^{-1}agx)$$

$$\begin{aligned} &= V_A(g^{-1}a^{-1}gaa^{-1}x^{-1}g^{-1}agx) \\ &= V_A([g, a]a^{-1}(gx)^{-1}agx) \\ &= V_A([g, a][a, gx]) \\ &\geq &\inf\{V_A([g, a]), V_A([a, gx])\} \\ &= &\inf\{V_A(e), V_A(e)\} \\ &= V_A(e). \end{aligned}$$

Hence $V_A([g^{-1}ag, x]) \ge V_A(e)$. Since $V_A(e) \ge V_A([g^{-1}ag, x]), V_A([g^{-1}ag, x]) = V_A(e)$.

Since $V_A(e) \ge V_A(\lfloor g^{-1}ag, x \rfloor), V_A(\lfloor g^{-1}ag, x \rfloor) = V_A$ This implies $g^{-1}ag \in C(A)$.

From step(3) and step(4), we have C(A) is a normal subgroup of G.

Theorem 5.17: Let A be an I-vague normal group of a group G. Then GV_A is a subgroup of C(A).

Proof: Let A be an I-vague normal group of a group G. We prove that GV_A is a subgroup of C(A).

Let $x \in GV_A$. Then $V_A(x) = V_A(e)$. Consider $V_A([x, y])$ for each $y \in G$.

$$V_A([x, y]) = V_A(x^{-1}(y^{-1}xy)) \ge \inf\{V_A(x^{-1}), V_A(y^{-1}xy)\}$$

= $\inf\{V_A(x), V_A(x)\}$
= $V_A(x)$
= $V_A(e).$
Hence $V_A([x, y]) \ge V_A(e)$

Since $V_A([x, y]) \subseteq V_A([x, y])$, $V_A([x, y]) = V_A(e)$. By the definition of C(A), $x \in C(A)$. Thus $GV_A \subseteq C(A)$. Since GV_A is a subgroup of G, GV_A is a subgroup of C(A).

ACKNOWLEDGMENT

The author would like to thank Prof. K. L. N. Swamy and Prof. P. Ranga Rao for their valuable suggestions and discussions on this work.

REFERENCES

- R. Biswas, Vague groups, International Journal of Computational Cognition, vol. 4(2), 2006, pp. 20-23. Systems, vol. 79, 1996, pp. 403-405.
- [2] M. Demirci, Vague groups, Jou. Math. Anal. Appl., vol. 230, 1999, pp. 142-156.
- [3] N. Ramakrishna, A Study of Vague Groups, Vague Universal Algebras and Vague Graphs, Doctoral Thesis, Andhra University, Visakhapatnam, India, March 2009.
- [4] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. vol.35, 1971, pp. 512-517.
- [5] K. L. N. Swamy, Dually residuated lattice ordered semigroups,
- Math. Annalen, vol. 159, 1965, pp. 105 -114.
- [6] K. L. N. Swamy, Dually residuated lattice ordered semigroups II, Math. Annalen, vol. 160, 1965, pp. 64 -71.
- [7] K. L. N. Swamy, Dually residuated lattice ordered semigroups III, Math. Annalen, vol. 167, 1966, pp.71-74.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, 1965, pp. 338-353.
- [9] T. Zelalem, I-Vague Groups, submitted for publication to the International Journal of Computational and Mathematical Sciences.
- [10] T. Zelalem, A Theory of I-Vague Sets, Doctoral Thesis, Andhra University, Vishakapatnam, India, July, 2010.