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Abstract—In this paper performance of Puma 560 
manipulator is being compared for  hybrid gradient descent 
and least square method learning based ANFIS controller with 
hybrid Genetic Algorithm and Generalized Pattern Search  
tuned radial basis function based Neuro-Fuzzy controller. 
ANFIS which is based on Takagi Sugeno type Fuzzy 
controller needs prior knowledge of rule base while in radial 
basis function based Neuro-Fuzzy rule base knowledge is not 
required. Hybrid Genetic Algorithm with generalized Pattern 
Search is used for tuning weights of radial basis function 
based Neuro- fuzzy controller. All the controllers are checked 
for butterfly trajectory tracking and results in the form of 
Cartesian and joint space errors are being compared. ANFIS 
based controller is showing better performance compared to 
Radial Basis Function based Neuro-Fuzzy Controller but rule 
base independency of RBF based Neuro-Fuzzy gives it an 
edge over ANFIS

Keywords—Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, 
Hybrid GA. 

I. INTRODUCTION

HE Integrated Neuro-fuzzy system combines the 
advantages of ANN and FIS. While the learning 

capability is an advantage from the viewpoint of FIS, the 
formation of linguistic rule base will be an advantage from the 
viewpoint of ANN. Integrated Neuro-fuzzy systems share data 
structures and knowledge representations. A common way to 
apply a learning algorithm to a fuzzy system is to represent it 
in a special ANN like architecture. However the conventional 
ANN learning algorithms (gradient descent) cannot be applied 
directly to such a system as the functions used in the inference 
process are usually non differentiable. This problem can be 
tackled by using differentiable functions in the inference 
system or by not using the standard neural learning algorithm.  

FALCON [1] uses a five-layered architecture with hybrid-
learning algorithm comprising of unsupervised learning to 
locate initial membership functions/rule base and a gradient 
descent learning to optimally adjust the parameters of the 
membership function to produce the desired outputs. GARIC 
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[2] implements a Neuro-Fuzzy controller by using two neural 
network modules, the ASN (Action Selection Network) and 
the AEN (Action State Evaluation Network) .ANFIS [3] 
implements a Takagi Sugeno FIS and has a five layered 
architecture. ANFIS uses hybrid backpropogation and least 
square method for learning. NEFCON [4] is designed to 
implement Mamdani type FIS and uses a mixture of 
reinforcement and backpropagation learning. A Neuro-Fuzzy 
methodology based on radial basis function and tuned with 
Genetic Algorithm is implemented in [5]. 

Robot manipulator faces uncertainties in their dynamics, 
such as payload mass, friction, and disturbance. Therefore, it 
is difficult to obtain an accurate model for manipulators. Thus, 
model based control systems may not be easily implemented 
in manipulators control. A new hybrid direct/indirect adaptive 
FNN controller with state observer and supervisory controller 
for a class of uncertain nonlinear dynamic systems is 
implemented in [6]. A robust adaptive fuzzy neural controller 
(AFNC) for identification and control of a class of uncertain 
multiple-input–multiple-output (MIMO) nonlinear systems is 
developed in [7]. A robust adaptive fuzzy neural controller 
(AFNC) suitable for motion control of multilink robot 
manipulators is implemented in [8]. A fast online structure 
and parameter learning algorithm, which can add or delete 
fuzzy control rules or neural network nodes automatically and 
systematically without predefinition is proposed in [9-10]. 

In this paper a systematic approach for designing Neuro-
Fuzzy controller is developed .Starting with PID controller, 
Takagi-Sugeno (TS) type Fuzzy PID controller is designed. 
From TS type Fuzzy PID, ANFIS and Radial basis Function 
based Neuro-Fuzzy (RBFNF) is designed. In section II, 
modeling of dynamics and kinematics is discussed. Section III 
deals details of ANFIS based controller design. Hybrid 
Genetic Algorithm tuned RBF based Neuro-Fuzzy is 
presented in Section IV. Section V and Section VI deal with 
results and conclusion. 

II. MODELLING OF MANIPULATOR DYNAMIC AND KINEMATICS

The dynamics of an n-link robotic manipulator is 
characterized by a set of highly nonlinear and strongly 
coupled second order differential equation. 

D ( ) C ( , ) G ( ) F ( )  (1) 
where ( )D  is the nxn inertial matrix, ( , )C  is the nx1 vector 
of centrifugal forces, G( ) is the nx1 vector of gravity loading, 

( )F  is nx1 vector of friction term. ,  and  are nx1 vector for 
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joint angular position, velocity and acceleration,  is nx1 joint 
torque vector. D, C, G, F are very complicated function of  and 

. The dynamic parameters of Puma 560 have been taken 
from [11]. Puma 560 joint actuators are DC servo motors with 
armature voltage as control input. The motor is connected to 
manipulator links through gear where the Robot dynamics 
appears as dynamic load. The dynamics of DC motor can be 
represented as (2-5) 

a b
dIE E L RI
dt

 (2) 

b eE K N  (3) 

a eI E K N / Ls R  (4) 

mK I  (5) 
Where Ea is the armature voltage, Eb the Back e.m.f, L and 

R are inductance and reactance of armature windings 
respectively, I is the armature current, N is gear ratio, Ke is the 
back e.m.f constant, Km is motor constant and  is load 
angular velocity. Actuator data of puma 560 Robot is taken 
from [12]. The transformation between the joint space and the 
Cartesian space of the robot is very important since robots are 
controlled in the joint space, whereas tasks are defined and 
object manipulated in the Cartesian space. The kinematics 
problem deals with the analytical study of the relation between 
these two spaces. The direct kinematics defined as the 
transformation from the joint space to the Cartesian space and 
the inverse kinematics defined as the transformation from the 
Cartesian space to the joint space. While modeling the 
kinematics of manipulator, arm singularity and configuration 
must be checked. Many methods have been proposed for 
better and feasible solution of manipulator kinematic problems 
[13-20]. The Forward and Inverse kinematic equations have 
been modeled [16] and are given in appendix A. Control 
system diagram of Puma 560 is shown in Fig.1 which consists 
of desired Cartesian space trajectory T, inverse kinematics 
block I, PID controller, servo motor M, dynamics D and 
forward kinematics Block F. In this paper PID controller in 
Fig.1 is being replaced with Neuro-Fuzzy Controller. 

Simulink model of Forward dynamics is shown in Fig.2 and 
simulink model of complete system is shown in Fig.3. 

Fig. 3 Simulink model of complete system 

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM BASED CONTROLLER

ANFIS implements a Takagi Sugeno FIS and has a five 
layered architecture. The first hidden layer is for Fuzzification 
of the input variables and T-norm operators are deployed in 
the second hidden layer to compute the rule antecedent part. 
The third hidden layer normalizes the rule strengths followed 
by the fourth hidden layer where the consequent parameters of 
the rules are determined. Output layer computes the overall 
input as the summation of all incoming signals. ANFIS uses 
back propagation learning to determine premise parameters (to 
learn the parameters related to membership functions) and 
least mean square estimation to determine the consequent 
parameters. The first step involved in designing ANFIS based 
controller is creation of Takagi-Sugeno FIS.A TS type Fuzzy 
PD+I controller is designed and data is collected from fuzzy 
controller for training of ANFIS.Fuzzy controller can be 
designed using parameters of crisp PID controller. Fuzzy PID 
controller is implemented as Fuzzy PD+I controller. The 
inputs to fuzzy controllers are error and error change. Matlab 
simulation diagram of fuzzy PD+I Controller is shown in 
Fig.4. 

Fig. 2 Simulink diagram of PUMA560 dynamics 

Fig. 1 Block diagram representation of Puma 560 control 
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Fig. 4 Matlab simulation diagram of Fuzzy PD+I

Important steps involved in designing fuzzy controller are 
rule base generation and input output gains setting. If d(k) is
desired joint angle and (k) is actual output  angle at any 

sampling instant k, error e(k), change in error e(k)  and 
integral error ie(k) are given as       

de(k) (k) (k)  (6) 

s

e(k) e(k )e(k)
T

1  (7) 

n

s
k

ie(k) e(k)T
1

 (8) 

For classical PD controller the controller output is given as  

p du(k) k e(k) T e(k)  (9) 

Where pk is gain of classical PD controller, dT  is derivative 
time constant and u (k) is control signal  

When actuating signal u(k) is equal to zero 

p dk e( k ) T e( k ) 0  (10) 

d

1e( k ) e( k )
T

 (11) 

From (10) it is clear that e(t)  directly depends upon dT . If 
state trajectory of the closed loop controlled system with PD 
controller for some constant PD value is plotted, it draws a 
sharp boundary between positive and negative control signals. 
This can be used to map rule base in discrete state space by 
taking the diagonal element of rule base as ZE. Rule base for 
fuzzy controller is given in Table I.  
 Crisp PID controller parameters are used to initially set 
fuzzy input output gains. Input error scaling factor is eS , error 
change scaling factor is ceS   and output scaling factor is outS

the fuzzy controller output fu is given as 

f e ce ie outu S e(k) S e(k) S ie(k) S         

(12)
 Comparing (11) with the crisp PID controller output, values 
of scaling factors come out to be
e out pS S k ce e dS / S T 1ie eS / S / T

 If maximum probable error for any joint is maxe and input 
/output membership function universe is taken as [-1 1], the 
error scaling factor eS  can be set to 1 max/ e .Error change and 
output scaling factor will be 
out p maxS k e ce d maxS T / e 1ie max iS / e T

Since better trajectory always starts from the current 
position of joint angle, initial tracking angle is zero. Taking a 
worst condition error of 10 radians. value of error scaling 
factor eS 0  is set to 0.1 and all other initial scaling factors 

0 0 0ce ie outS ,S ,S  are calculated using values of classical PID 
parameters taken from [20] as given in Table II .For all six 
joints structure of Fuzzy controller is same as that of Fig.4 but 
with different scaling factors as given in Table II. 
 Data set collected from fuzzy controller is used for training 
ANFIS. Structure of ANFIS used is shown in Fig.5. 
Membership function after training is shown in Fig.6 and 
Fig.7.The designed ANFIS is substituted in place of Fuzzy 
block in Fig.4 keeping gains as it is. The Control system 
diagram with ANFIS is shown in Fig.8. 

Fig. 5  structure of ANFIS

TABLE II
INITIAL VALUE OF SCALING FACTORS

Joint
0eS 0ceS 0ieS 0outS

1 0.1 0.009 0.4 2109.375 
2 0.1 0.0084 0.4267 2400 
3 0.1 0.0084 0.4267 2400 
4 0.1 0.0056 0.64 5400 
5 0.1 0.0056 0.64 5400 
6 0.1 0.0056 0.64 5400 

TABLE I
RULE BASE FOR FUZZY CONTROL

\e e NB NM NS ZE PS PM PB 
PB ZE PS PM PB PB PB PB 
PM NS ZE PS PM PB PB PB 
PS NM NS ZE PS PM PB PB 
ZE NB NM NS ZE PS PM PB 
NS NB NB NM NS ZE PS PM 
NM NB NB NB NM NS ZE PS 
NB NB NB NB NB NM NS ZE 
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Fig .6 Learned membership function of error using ANFIS 

Fig. 7 Learned membership function of error change using ANFIS 

Fig. 8 Control system block diagram with ANFIS 

IV. HYBRID GENETIC ALGORITHM TUNED RADIAL BASIS FUNCTION BASED 
NEURO FUZZY CONTROLLER

The RBF neural network (RBFNF) is usually used to 
approximate a continuous linear or nonlinear function 
mapping. The structure of the two-input and single output 
RBFNF is shown as in Fig.9. The input layer accepts the 
system state feedback ( e,e ) and the fuzzy inferencing is 
processed at the hidden layer. The strength of the control 
action for each of the fuzzy rules is given by the 
interconnected weights between the hidden and the output 
layers. The output layer implements the normalization 
operation to produce the control signals ( nfu ).Basically, fuzzy 
logic control involves three main stages: Fuzzification, 
inferencing, and defuzzification. This fuzzy inference 
mechanism can be further simplified to as only pattern 
matching and weights averaging, thereby, eliminating the 
procedures of Fuzzification and defuzzification. The first 
operation deals with the IF part of the fuzzy control rules; it 
determines the matching degree of the current input to the 
condition of each of the fuzzy control rules. By characterizing 
the fuzzy input membership functions with only two 
parameters ( xC  and xD ), and using the Gaussian membership 
functions, the matching formula can be written as follows: 

2
i
x ,n n

i i
x ,n

C x
h exp

D
 (12) 

For i=1 to T.
Here T is the total number of fuzzy rules i

x ,nC  and i
x ,nD

denotes the center and the width of nth input variable’s 
membership assigned to the ith control rules, respectively. 
While  is the norm operator presented as Euclidean 

distance. The matching degree process is simply an operation 
that returns the matching level between the inputs and the rule 
pattern for the ith rule. A matching degree of ‘1’ means that a 
full match occurs to that rule, while a small ih  indicates poor 
matching between the input pattern and the particular rule 
pattern. The weights are then averaged to obtain the control 
action of each output variable. Thus controller output nfu  can 

be computed by normalizing the weights  

p T

nf i im i
i 1 i 1

u ( h .w ) ( h )                        (14) 

From ANFIS block diagram shown in Fig.8 only fuzzy 
block is replaced with Radial basis function based Neuro-
Fuzzy block keeping all the gains same .For each of 49 rules a 
hidden layer neuron is taken. Each of the node consists of two 
Gaussian functions with there centre and width as that of error 
and error change in antecedent part of rule base to implement 
(6) as shown in Fig.10.  
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Fig. 9. Two-input and single output RBFNF 

Final control output nfu is calculated using (7) as shown in 

Fig.11. For 49 hidden layer neurons there are 49 weights 
between hidden layer and output .Seven membership Gaussian 
functions for error and error change give 28 variables as each 
of them have there mean and variance. So total of 77 variables 
comes in action. GA was used initially to search the optimum 
search space using all these 77 variables. Neuro-Fuzzy block 
is attached with first joint of fuzzy controller and goal of GA 
was to minimize integral absolute error IAE between fuzzy 
output and Neuro-Fuzzy output. Fitness curve of GA shown in 
Fig.12. After tuning process of GA ,control using Neuro-
Fuzzy started and GPS was used to search mean and variance 
(28 variables keeping weight same as that returned by GA)  to 
minimize ITSE of system. After 30 iterations of GPS, variance 
is kept same and now only mean is varied using GPS. Tuning 
curve of GPS is shown in Fig.13 and Fig.14.Tuned 
membership error and error change membership function are 
shown in Fig.15 and Fig.16. 

Fig. 10 Simulink model of each node 

Fig. 11 Simulink model of final control output nfu

Fig. 12 Best Fitness curve of GA 

Fig. 13 Best Function value curve of GPS for mean and variance 
tuning

Fig. 14 Best Function value curve of GPS for mean tuning 

Fig. 15 Membership function of error after tuning 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

938

Fig.16 Membership function of error change after tuning 

V. RESULTS

Results of both types of Neuro-Fuzzy controllers are tested 
in terms of ITSE in Cartesian space and ISE in joint space. 
The desired Cartesian space trajectories taken for testing 
controller is butterfly. Parametric equation of Butterfly 
trajectory is 

cos 5200 *cos( )( 2cos(4 ) sin ( / 12)) 350t
dx t e t t

cos 5200 *sin( )( 2cos(4 ) sin ( / 12)) 200t
dy t e t t

For checking the robustness of controller a disturbance torque 
D is applied  

1.5sin(4.3575 ) sin( 9.825) sin(2.7075)+1D t
The sampling time of system is 1ms. Fig.17 and Fig.18 show 
desired and actual output butterfly trajectory with RBFNF 
based controller with and without disturbance. Cartesian space 
error dx , dy dz  for tracking butterfly trajectory with 
RBFNF  based controller with and without disturbance are 
shown in Fig.19.a and Fig.19.b and corresponding joint space 
ITSE  and Cartesian space Integral square 
errors; xISE , yISE , zISE  are shown in Table  III .and Table 
IV. Fig.20 to Fig.22.b shows trajectory and error for ANFIS 
based controller. From Table III and Table IV of joint space 
ITSE and Cartesian space ISE, it is clear that performance of 
ANFIS in joint space is better than RBFNF. 

TABLE III 
JOINT SPACE ITSE USING NEURO FUZZY CONTROLLER 

Butterfly
ITSE

Without D With D 

ANFIS 19.6763 76.0363 

RBF-NF 42.7020 109.0133 

TABLE IV 
CARTESIAN SPACE ISE USING NEURO FUZZY CONTROLLER 

xISE (mm) Butterfly

yISE (mm) without D with D

1205.3 1000.6 
ANFIS

1207.5 5154.1 

519.6466 865.68 
RBFNF

3840.4 7421.5 

Fig. 17 Butterfly trajectory with RBFNF without disturbance 

Fig. 18 Butterfly trajectory with RBFNF with disturbance 
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Fig. 19.a Cartesian space error for butterfly trajectory tracking using 
RBFNF without disturbance 

Fig. 19.b Cartesian pace error for butterfly trajectory tracking using 
RBFNF with disturbance 

Fig. 20 Butterfly trajectory with ANFIS without disturbance 

Fig. 21 Butterfly trajectory with ANFIS with disturbance 

Fig. 22.a Cartesian pace error for butterfly trajectory tracking using 
ANFIS without disturbance 

Fig. 22.b Cartesian pace error for butterfly trajectory tracking using 
ANFIS with disturbance
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VI. CONCLUSIONS

ANFIS and Hybrid Genetic Algorithm, Generalized Pattern 
Search tuned RBFNF are implemented for Puma 560 
manipulator control. Both of controllers are being compared 
for butterfly trajectory tracking in Cartesian space 
.Performances in terms of joint space ITSE and Cartesian 
space ISE is being compared.   The proposed RBFNF 
methodology in [5] is modified here by using hybrid GA and 
Generalized Pattern Search technique and successfully 
implemented for robotic manipulator control applications. GA 
tuned RBFNF is not very effective because of increase in 
dimensionality of search space with increase in number of 
antecedent in Fuzzy rule base. ANFIS is found to be slightly 
better than RBF-NF. But the designing of RBF-NF without 
rule base gives it an edge over ANFIS. 
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APPENDIX.

Abbreviation used: 

,

cos( ), sin( ), cos( )

sin( ), sin( )
i i i i ij i j

ij i j i j i j

c s c

s s
The arm configuration parameters of Puma 560 

1 2 3,  and k k k are defined as 

1
1,  lefty

-1 ,  righty
k

2
1,  elbow up

-1 ,  elbow down
k
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3
1,  no flip

-1 ,  flip
k

The parameters are 1 2 3,  and k k k are used to find inverse 
kinematics solution. However in the case of a known set of 
joint angles, as in the case of the direct kinematics, these 
parameters can be computed. 
Forward kinematics: The problem is defined as given the joint 
angles vector, find the Cartesian position/orientation vector R,
and the arm configuration parameters 1 2 3, ,k k k
The orientation angles ,  and r r r  are defined as 

23 5 23 5 5

6 23 4 5 23 23 5 4

1 5 4 5 23 23 5 4

cos( ) c c s s c
tan 2[s s ,s c s c c ]

tan 2[s s ,c s c s c ]

r
r a

r a

Where atan2 (x, y) is four-quadrant version 1tan ( / )x y . As 
cos( ) 1r  the accuracy of equations deteriorates because 

cos( ) 1r  is a singular point. If sin( ) 0r , r is set to zero 
or depending upon sign of cos( )r . Value of r  is set to 
zero and r is calculated using 

1 46 23 46tan 2[2s / [ ],c ]rr a c c
Position vector R, is defined as 

1 1 4

1 1 4

1 4

x b r r

y b r r

z a r

r w s dc l s s

r w c ds l s c

r w l l c
Where 

'

'

2 2 3 23

2 2 3 23

a

b

w l c l c

w l s l s
The arm configuration is determined by evaluating parameters 

1 2 3, ,k k k  .If 0bw then the arm is lefty and 1 1k , but if 
0bw , then the arm is righty and 1 1k . If 1 3 0k then the 

arm is elbow up and 2 1k  else 2 1k  .if 5 0  then a 
no-flip solution exists and 3 1k  but if 5 0  then a flip 
solution exist and 3 1k
Inverse kinematics: 
The problem is defined as given Cartesian position/orientation 
vector R, and the arm configuration parameters 1 2 3, ,k k k find
the joint angles vector. 
Joint angles 1 2 6, ......., are given as 

1 1 1 1 1 1tan 2( , ) tan 2( , )x ya k w k w k a d l
Where 

1 4 4 4( ) ( ) ( )x r r y r r z rw r l s s i r l s c j r l c k Singular

point exists if 1 1x yw w . However considering the arm 
geometry this condition is never satisfied 

2 2 2
' 2 3

3
2 3

cos( )
2

n l l
l l

'
3 1 2 3k k

5 23 23 1c cos( )r rc c s s r

5if s 4 23 , 1 23 , 1 23tan 2[ , ]r r r ra s s c s c c s

6 r
Where 

23 , 1 23 23 , 1tan 2[ , ]r r r ra s s s c c s c
Manipulator loses a degree of freedom when two joint axes 
become collinear. This is case when 5sin( ) 0 and,
consequently 4 6and become linearly dependent. The 
accuracy of 4 and deteriorates as 5sin( ) 0 and they 
break down completely if 5sin( ) 0 . Therefore for some 
value of  and for 5sin( ) better value of 4 6and can
be obtained using the equation

4 , 1 23 , 1tan 2 0.5 [ ],r r ra s c c c

In the case of a no-flip condition, that is 3 1k the wrist 
angles are obtained from the above equations. If, however,

3 1k , the flip solution becomes 4 5 6, ,

1 2 3

4

.672 , .432 , .433
.056 , .149 (offset in arm

 due to shoulder offset and elbow offset), 2.72
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Actuator data of Puma 560 robot 
Motor  R L Ke Km N 

1 1.6 0.0048 0.19 0.2611 62.55 
2 1.6 0.0048 0.19 0.2611 107.81 
3 1.6 0.0048 0.19 0.2611 53.15 
4 3.9 0.0039 0.12 0.0988 76.04 
5 3.9 0.0039 0.12 0.0988 71.92 
6 3.9 0.0039 0.12 0.0988 76.65 


