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Hybrid function method for solving nonlinear
Fredholm integral equations of the second kind
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Abstract—A numerical method for solving nonlinear Fredholm
integral equations of second kind is proposed. The Fredholm type
equations which have many applications in mathematical physics
are then considered. The method is based on hybrid function ap-
proximations. The properties of hybrid of block-pulse functions and
Chebyshev polynomials are presented and are utilized to reduce the
computation of nonlinear Fredholm integral equations to a system
of nonlinear. Some numerical examples are selected to illustrate the
effectiveness and simplicity of the method.

Keywords—Hybrid functions, Fredholm integral equation, Block-
pulse, Chebyshev polynomials, Product operational matrix.

I. INTRODUCTION

NTEGRAL equations are often involved in the mathemati-

cal formulation of physical phenomena. Integral equations
can be encountered in various fields such as physics [1],
biology [2] and engineering. But we can also use it in numer-
ous applications, such as biomechanics, control, economics,
elasticity, electrical engineering, fluid dynamics, heat and mass
transfer, oscillation theory, queuing theory, etc. Fredholm and
Volterra integral equations of the second kind show up in
studies that include airfoil theory, elastic contact problems,
fracture mechanics, combined infrared radiation and molecular
conduction [3] and so on.

The problem of finding numerical solutions for Fredholm
integral equations of the second kind is one of the oldest
problems in the applied mathematics literature and many
computational methods are introduced in this field. One may
find in the references [4], [5], [6], [7], a collection of the best
numerical methods for solving Fredholm integral equations
appeared after 1960. Also, a functional analysis framework for
these methods can be found in [8]. The classical methods for
finding approximate solutions, dependent on the definition of
the approximate solution, are mostly classified into two types,
collocation methods and Galerkin methods.

In this study, we are concerned with the application of
hybrid block-pulse function and Chebyshev polynomials to the
numerical solution of Fredholm integral equation of the form

y(z) = f(z) +/0' ko Oy@]md, 0<z<1. ()

The function f(x) and k(x,t) are known. y(z) is unknown
function to be determined and m < 1 is a positive integer. For
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m = 1, (1) is a linear and m > 2 is a nonlinear Fredholm
integral equation.

The article is organized as follows: In Section 2, we describe
the basic formulation of hybrid block-pulse function and
Chebyshev polynomials required for our subsequent. Section
3 is devoted to the solution of equation (1) by using hybrid
functions. In Section 4, we report our numerical finding
and demonstrate the accuracy of the proposed scheme by
considering numerical examples.

II. PROPERTIES OF HYBRID FUNCTIONS

A. Hybrid functions of block-pulse and Chebyshev polynomi-
als

Hybrid function by (z),n = 1,2,--- N, m =
0,1,---,M — 1, are defined on the interval [0,1) as
v [ Tw@Nz—2n+1), xe[2t 2]

bnm () = { 0, otherwise. )

where n and m are the orders of block-pulse functions and
Chebyshev polynomials, respectively. Here T, (z) are the
well-known Chebyshev polynomials which are orthogonal in
the interval [0, 1] with respect to the weight function w(z) =
1/v/1 — 22 and satisfy the following recursive formula:

To =1,
T1 =Z,
Tt =22T () — T (x), m=1,2,---.
Since by, consists of block-pulse functions and Chebyshev

polynomials, which are both complete and orthogonal, the set
of hybrid functions is complete orthogonal set.

B. Function approximation

A function y(x) defined over the interval [0,1] may be
expanded as

i C'VL'ULb’H/"L7 (3)

1m=0

]38

y(z) =

n

where
Cnm = (f(x)7bnm($)),
in which (.,.) denotes the inner product.
If y(x) in (3) is truncated, then (3) can be written as

N M-1

y(I) = Z Z Cn'mbnm

n=1 m=0

= CTB(z) = BT (z)C, 4)
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where
C= [610, Ci1y " C1M—1,C20," " ,C2M —1," " " ,CNM—l]T
5)
and
B(z) =[bio(x),b11(x), - ,biv—1(x), co0(), -+ -, ©
boni—1(2), -+ bvo(@), -+, byar—1(2)]”

In (5) and (6)’ Cnm, N = 1727'“ 7N7m:O71727"' 7M717
are the coefficients expansions of the function y(z) in the
subinterval [(n — 1)/N,n/N] and by, (x) are defined in (2).

C. The product operational of matrix the hybrid of block-
pulse and Chebyshev polynomials

The following property of the product of two hybrid func-
tion vectors will also be used. Let

B(z)BT (#)C ~ CB(z) 7)

where C' = diag(él,ég, e ,éN) isa MN x MN product
operational matrix. And C;,7 = 1,2,--- ,N are M x M
matrices given in [9]. We also define the matrix D as follows

D= /0 B(z)BT (z)dx (8)

For the hybrid functions of block-pulse and Chebyshev poly-
nomials, D has the following form:

D =

where L is M x M nonsingular symmetric matrix given in
[10].

III. NONLINEAR FREDHOLM INTEGRAL EQUATIONS

Consider the following integral equation

1
o) = 1)+ [kl 0<a <1 ©)

We approximate f(z),y(z), k(x,t) and [y(t)]™ by the way
mentioned in Section 2 as

f(a) =B"(x)F,

y(z) =B" (z)C,

k(x,t) =BT (z)KB(t),

and

[y =[BT (1)C]™ = CTB(t) - BT ()C[BT (1)C]" .
(10)
Applying (7),equation (10) becomes

[y()]™ = CTC™ 'B(t) = C*B(t).
With substituting in (9) we have

BT (z)C = BT (2)F + BT (2)K </01 B(t)BT(t)dt> cT.

Applying (8), then we get
C=F+KDCT

which is a nonlinear system of equations. By solving this
equation we can find the vector C.

IV. CONVERGENCE AND ERROR ANALYSIS

New we discuss the convergence of the hybrid functions
method for the nonlinear integral equation (1). The following
theorem is fundamental for the convergence analysis.

Theorem I: Let y(z) € HX(—1,1) (Sobolev space),
yn(z) = Zf\io a;T;(x) be the best approximation polyno-
mials of y(z) in L2 — norm, then

Iy(@) = yn (@) 2 -10< CoN~F | y(2) -1,

where Cj is a positive constant, which depend on selected
norm and independent with y(x) and N [11].

Theorem 2: Let y(z) € HX(0,1), I,, = [(n —1)/N,n/N]
then

I 9(@) — (@) a2 00 < CoM ™™ mag | y(a) s,

By using of Theorem 1, it is obvious[12].

We can easily verify the accuracy of the method. Given that
the truncated hybrid function in (6) is an approximate solution
of (1), it must have approximately satisfied these equations.
Thus, for each z; € [0, 1]

E(x;) = BT (z;)C — /01 k(x;,t)C*T B(t)dt — f(x;) =~ 0

If max E(z;) = 10~ (k is any positive integer) is prescribed,
then the truncation limit NV, M is increase until the difference
E(z;) at each of the points z; becomes smaller than the
prescribed 10,

V. NUMERICAL EXAMPLES

In this section, we applied the method presented in this
paper for solving integral equation of the form (1) and solved
some examples. All results were computed using Matlab 7.0.
Examplel Let us first consider the nonlinear Fredholm inte-
gral equation

5 8

ylx) =a° — I % +/0 (z 4 t)[y(t)]2dt

with the exact solution y(x) = 2 — 1. Table 1 shows the
numerical results for Example 1 with N =2, M = 10.

TABLE I
NUMERICAL RESULTS FOR EXAMPLE 1

Exact solution

Approximated solution

Absolution error

0.1 -9.900000000000e-001  -9.900000000007e-001  7.158718062783e-013
0.2 -9.600000000000e-001  -9.600000000007e-001  7.920331057675e-013
0.3 -9.100000000000e-001  -9.100000000008e-001  8.679723606519e-013
0.4 -8.400000000000e-001  -8.400000000009¢-001  9.439116155363e-013
0.5 -7.500000000000e-001  -7.500000000010e-001  1.019850870420e-012
0.6 -6.400000000000e-001  -6.400000000010e-001  1.096012169909¢-012
0.7 -5.100000000000e-001  -5.100000000011e-001  1.171951424794e-012
0.8 -3.599999999999e-001  -3.600000000012¢-001  1.247890679678e-012
0.9 -1.900000000000e-001  -1.900000000013e-001  1.323829934563¢-012

Example2 As the second example consider the following
integral equation

) = ot —or - LF20T | attutopars
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with the exact solution y(z) = e®. The comparison among
the hybrid solution, Haar wavelets solution and the analytic
solution for z € [0, 1] is shown in Table 2 for N = 2, M = 10,
which confirms that the hybrid function method in section 4

gives almost the same solution as the analytic method.

TABLE II

COMPARISON RESULTS FOR EXAMPLE 2

z  Analytic solution Hybrid function solution Haar wavelets solution k=32
0.1 1.10517091807565  1.10521832988095 1.107217811
0.2 1.22140275816017  1.22149758177075 1.218102916
0.3 1.34985880757600  1.35000104299025 1.341165462
0.4 1.49182469764127  1.49201434483251 1.474918603
0.5 1.64872127070013  1.64895832944478 1.667402633
0.6 1.82211880039051 1.82240326946041 1.833861053
0.7 2.01375270747048  2.01408458179746 2.016679830
0.8 2.22554092849247  2.22592019104068 2.217456630
0.9 2.45960311115695  2.46002971282342 2.437978177
Example3
1
2
o) = £@) + [ atly(o)ae13
0
where
9 9 7 1
) =fi@)— s — o+ =5+
@) = fi(@) (128 32¢ | 162 16et )’
and
f ({L') _ 6295—27 0<z< %;
BT 2?4+ i+ f<a<

The exact solution is y(z) = fi(z). Table 3 illustrates the
numerical results of Example3 with NV =2, M = 10.

TABLE III
COMPARISON RESULTS FOR EXAMPLE 3

T Present method Exact solution Method in [13],k=32
0.1 0.16529887499956 0.16529888822159 0.1625177090
0.2 0.20189649154656 0.20189651799466 0.1921647474
0.3 0.24659692403710 0.24659696394161 0.2290236855
04 0.30119415470771 0.30119421191220 0.2744773506
0.5 0.36787933407020 0.36787944117144 0.3240321944
0.6 0.25787944563142 0.25787944117144 0.2134699868
0.7 0.12787944145781 0.12787944117144 0.8532965420
0.8 -0.02212055879412 -0.02212055882856 -0.0603813505
0.9 -0.19212055862314 -0.19212055882856 -0.2236779332

VI. CONCLUSION

We have solved the nonlinear Fredholm integral equations
of second kind by using hybrid of block-pulse functions and
Chebyshev polynomials. The properties of hybrid of block-
pulse functions and Chebyshev polynomials are used to reduce
the equation to the solution of nonlinear algebraic equations.
[lustrative examples are given to demonstrate the validity
and applicability of the proposed method. The advantages of
hybrid functions are that the values of NV and M are adjustable

as well as being able to yield more accurate numerical solu-
tions than Haar wavelets functions [13], for the solutions of
integral equations. Also hybrid functions have good advantage
in dealing with piecewise continuous functions, as are shown.
The method can be extended and applied to the system of
nonlinear integral equations, linear and nonlinear integro-
differential equations, but some modifications are required.
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