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Abstract—The vehicle routing problem (VRP) is a famous 

combinatorial optimization problem. Because of its well-known 
difficulty, metaheuristics are the most appropriate methods to tackle 
large and realistic instances. The goal of this paper is to highlight the 
key ideas for designing VRP metaheuristics according to the 
following criteria: efficiency, speed, robustness, and ability to take 
advantage of the problem structure. Such elements can obviously be 
used to build solution methods for other combinatorial optimization 
problems, at least in the deterministic field. 
 

Keywords—Vehicle routing problem, Metaheuristics, 
Combinatorial optimization.  

I. INTRODUCTION 
HE vehicle routing problem (VRP) was introduced in [1] 
and can be described as follows. A fleet of m identical 

vehicles of capacity Q is based at the depot v0, where m is 
known or could also be a decision variable. Let G be a graph 
with vertex set {v0, v1, … , vn} where the vi’s (for i > 0) are the 
customers. For each i, j in {0, 1, … , n}, the cost cij and travel 
time tij are known. Usually, the cost and travel time matrices 
are symmetrical, thus edges instead of arcs can be considered 
between the vertices. With each customer i is associated a 
demand qi and a service time ti. The VRP consists in building 
at most m routes such that:  

• Each route starts and ends at the depot,  
• Each customer is visited exactly once by exactly one 

vehicle,  
• The total demand of each route does not exceed Q,  
• The total duration of each route (including travel and 

service times) does not exceed D,  
• The total routing cost is minimized.  
Several extensions have been studied. Currently, no known 

exact method is able to solve all instances with up to 50 
vertices [2]. For survey papers on the VRP, the reader is 
referred to [3] – [8]. If m = 1 and Q = D = +∞, then the VRP 
reduces to the famous traveling salesman problem. The VRP 
is NP-hard and among the most studied in the combinatorial 
optimization community. Because of its well-known 
difficulty, metaheuristics are the most appropriate methods to 
tackle medium and large instances. 

Modern methods for solving complex optimization 
problems are often divided into exact methods and 
metaheuristic methods. An exact method guarantees that an 
optimal solution will be obtained in a finite amount of time. 
Among the exact methods are branch-and-bound, dynamic 
programming, Lagrangian relaxation based methods, and 
linear and integer programming based methods (e.g., branch-
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and-cut, branch-and-price, branch-and-cut-and-price) [9]. 
However, for a large number of applications and most real-life 
optimization problems, which are typically NP-hard [10], such 
methods need a prohibitive amount of time to find an optimal 
solution. For these difficult problems, it is preferable to find a 
satisfying solution in a reasonable amount of time. This is 
exactly the goal of heuristics (simple solution methods) and 
metaheuristics (more advanced solution methods). 

For a survey on metaheuristics, the reader is referred to 
[11]. There mainly exist two classes of metaheuristics: local 
search methods (e.g., simulated annealing, tabu search, 
variable neighborhood search, guided local search, threshold 
algorithms, GRASP), and population based methods (e.g., 
genetic algorithms, ant colonies, scatter search, adaptive 
memory algorithms and memetic search which can be seen as 
a generalization of genetic algorithms).  

A local search method starts with an initial solution and 
tries to improve it iteratively. At each iteration, a modification 
of the current solution, called a move, is performed in order to 
generate a neighbor solution. The definition of a move, i.e. the 
definition of the neighborhood structure, depends on the 
problem considered. In order to prevent cycling, in a tabu 
search [12], the reverse of the recently performed moves are 
forbidden for a few iterations.   

In contrast, population based methods, also called 
evolutionary algorithms, can be defined as iterative 
procedures that use a central memory to store and operate on 
certain solutions collected during the search process. Each 
iteration, called a generation, involves two complementary 
ingredients: cooperation and self-adaptation. In the 
cooperation effort, the central memory is used to build new 
offspring solutions, while self-adaptation consists of 
individually modifying the offspring solutions. The output 
solutions of the self-adaptation phase are used for updating the 
content of the central memory. In some population based 
algorithms, the self-adaptation phase can be performed with 
the use of a local search which is applied individually to some 
of the offspring solutions. For simplicity, such algorithms are 
also classified in population based methods in this paper. 

Theoretically, there exist some convergence theorems 
associated with the use of metaheuristics (e.g., [13] – [16]). 
Basically, the theorems state that the search has a high 
probability to find an optimal solution, but in a huge amount 
of time, which is likely to be larger than the time needed for a 
complete enumeration. Therefore, such theoretical results do 
not have any impact in practice, and, moreover, do not help to 
efficiently design a metaheuristic. 

The performance of a metaheuristic can be evaluated 
according to several criteria, and not only its efficiency (i.e. the 
quality of the obtained results). The three criteria studied in 
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this paper are: speed (i.e. time needed to get good results), 
robustness (i.e. sensitivity to variations in problem 
characteristics and data quality), and ability to take advantage 
of problem structure. It is usually difficult to design a 
metaheuristic having a good behavior according to all these 
criteria.  

The goal of this paper, which is based on [17] and 
specifically focuses on the VRP, is to highlight the key ideas 
when designing metaheuristics for the VRP, according to 
speed (Section II), robustness (Section III), and the ability to 
take advantage of the problem structure (Section IV). It is 
assumed that all the presented ideas contribute to efficiency.  

II. IDEAS FOR THE DESIGN OF QUICK SOLUTION METHODS 
In this section are presented key ideas which are useful 

when designing quick metaheuristics for the VRP.  

A. Generation of a Single Solution 
The generation of a single solution in the selected solution 

space should not be time consuming; if necessary, relax some 
constraints in order to deal with non feasible solutions, 
allowing the objective function to be adjusted to achieve this 
goal.  

Sometimes, even the goal of finding a feasible solution for 
the problem is NP-hard. In such a case, one can relax some 
constraints and add a weighted penalty term α • P(s) to the 
objective function, which penalizes any constraint violation 
occurring in solution s. The idea is to choose an arbitrary 
initial value for α, and then: to augment it if the search does 
not often encounter feasible solutions, and to reduce it if the 
search seems to be trapped in a region of the solution space 
only containing feasible solutions [18].  

For the VRP, if the number m of vehicles is small when 
compared to the number n of customers, it can be difficult to 
generate a feasible solution with respect to the given values of 
Q (maximum capacity of a vehicle) and D (maximum route 
duration associated with a vehicle). As proposed in the 
efficient tabu search proposed in [18] and called 
TABUROUTE, two penalty terms can be added to the 
objective function, which are the capacity and the route 
duration violations. 

B. Reduction of the Solution Space 
A solution method is obviously quicker if the solution space 

is reduced, that is if the set of values that each variable can 
have is reduced. When no loss of generality is entailed, the 
reduction of the search space can be done by the use of arc-
consistency techniques (e.g., [19] and [20]), where some 
inconsistent values are removed from the set of possible 
values of some variables. Another approach consists in solving 
a subproblem of the general problem (with an exact method or 
a heuristic), in order to reduce the problem size. 

For the VRP, in [21], the author proposed a decomposition 
of the problem in smaller subproblems. This allows the use of 
parallel processors and strongly reduces the computing time, 
because each subproblem can be solved independently (even if 
periodic moves of vertices to adjacent sectors are necessary).  

In the granular tabu search proposed in [22], unpromising 
edges are removed from the graph, i.e. edges which have a 
small chance of being contained in an optimal solution. Thus, 
the remaining graph becomes sparse and the search is 
significantly accelerated. 

C. Simplicity 
If two methods obtain the same kind of results within the 

same amount of time, the simpler one is obviously better. As 
mentioned in [4]: “simple codes, preferably short and self-
contained, stand a better chance of being adopted, although a 
minimum of complexity is to be expected for good results”. 

For the VRP, simple and straightforward solution methods 
are already discussed in this paper (such as λ-exchanges 
moves with small values of λ, as presented in subsection II.D). 
In contrast, a rather complex tabu search method, with 
numerous parameters, was proposed in [23], which is not 
competitive with the best algorithms. It uses sophisticated 
moves: the authors consider swaps of vertices between routes, 
repositioning of vertices into other routes (based on the search 
of an optimal flow in a network), and improvements on local 
routes (based on 3-opt exchanges, as developed in [24]). 

D. Conservation of the Solution Structure 
When designing local search methods, slight moves should 

be used. Thus, any neighbor solution should keep the major 
part of the current solution. As a consequence, a guided search 
in the solution space would be possible: we know from where 
we come and we know where we go, and no big jump is 
performed over the solution space. 

For the VRP, in λ-exchanges proposed in [25], a move 
consists in exchanging at most λ customers between two 
routes (where typically λ is in {1, 2}). This includes simple 
swap moves (i.e. two vehicles exchange a customer) and 
simple insertion moves (i.e. a customer is moved from a route 
to another one). λ-exchanges moves (with small values of λ) 
preserve the solution structure, as it is for example the case in 
the tabu search proposed in [21], where standard vertex 
insertions and exchanges are performed.  

In contrast, the first implementation of simulated annealing 
[26] did not provide competitive results, probably because of 
its neighborhood structure: a move involves several 
ingredients, such as reversing part of a route, moving part of a 
route within the same route, and trading vertices between two 
routes.  

In addition, ejection chain moves [27] do also not preserve 
the major part of the current solution structure, as a move 
consists in moving vertices in a cyclic manner from route 1 to 
route 2, from route 2 to route 3, and so on.  

E. Incremental Computation 
A neighbor solution should be evaluated from the current 

solution, its value and the considered move. Formally, let s be 
the current solution and s’ a neighbor solution obtained by 
performing move m from s. It should be possible to compute 
f(s’) from s, m and f(s). More precisely, it should be possible 
to evaluate how much m deteriorates f(s) and how much m 
improves f(s), which is respectively denoted lost(m) and 
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gain(m). Thus, assuming f has to be minimized, we have f(s’) 
= f(s) + lost(m) − gain(m), which is usually much quicker to 
compute than f(s’) from scratch. 

For the VRP, incremental computation is easy to develop 
for insertion moves or swap moves, because the evaluation 
only focuses on the two involved routes. In contrast, an 
efficient incremental computation is difficult to design for 
ejection chains. 

III. IDEAS FOR THE DESIGN OF ROBUST SOLUTION METHODS 
In this section are presented key ideas which are useful 

when designing robust metaheuristics for the VRP.  

A. Connectivity of the Solution Space 
A local search should use flexible moves so that from any 

solution s, it should be possible to reach any other solution s’ 
of the solution space by performing a sequence of moves. 
Algorithms in which an optimal solution can be reached from 
any starting solution, and in which the probability of selecting 
a given move from a current solution is bounded below by a 
positive constant, are referred to in [28] as probabilistically 
approximately complete. Such algorithms have the 
characteristic that the probability to find an optimal solution 
approaches 1 if the computation time approaches ∞. 

For the VRP, two main ways are possible to define 
neighbor solutions. Moves based on λ-exchanges (with small 
values of λ) satisfy the connectivity principle. In contrast, 
moves based on ejection chains do not seem to satisfy it. Note 
that local search methods based on ejection chains do not 
outperform algorithms based on λ-exchanges [6].  

B. Escape from Local Optimum 
A local search should be able to escape from any local 

optimum. A local optimum is defined according to a specific 
neighborhood structure N. More precisely, solution s is a local 
optimum for N if there is no better solution in N(s), i.e. in the 
set of its neighbor solutions. Thus, a solution s could be a local 
optimum for one neighborhood structure but not for another. 
To escape from a local optimum, simulated annealing has an 
acceptation probability [29], tabu search has a tabu list [12], 
and variable neighborhood search uses various neighborhood 
structures with different amplitudes [30]. 

For the VRP, for insertion moves, tabu status prevent 
cycling by forbidding the reinsertion of a vertex in its original 
route, or by forbidding to move again a vertex if it was just 
moved from one route to another. 

C. Diversity of the Population 
An evolutionary algorithm should preserve the diversity of 

the involved population. To reach this goal, a diversity 
measure can be used. The mechanism which should preserve 
the diversity of the population is usually the self-adaptation 
phase of every population based method. It is for example the 
greedy force in ant colonies and the mutation operator in 
genetic algorithms. It is commonly recognized that the variety 
of genes in the population is a crucial aspect of performance in 
genetic algorithms. As mentioned in [31], the process of 

convergence can be described by measuring the disorder of 
genes in terms of the entropy ENT, which is ideally 1 for the 
initial population with randomly generated solutions, and 0 at 
the end of the search when the population converged to a 
global optimum. 

For the VRP, the memetic algorithm proposed in [32] is 
based on the permutation approach, where a solution is 
represented with a permutation of all the customers (without 
the depot), without any assignment to the vehicles. An exact 
method (based on the shortest path problem in an auxiliary 
graph) is then used to optimally assign the customers to the 
vehicles. A crossover is then defined as follows: two cutting 
places i and j are first chosen in the first parent, then the 
corresponding string is placed in positions i, … , j in the 
offspring solution, then the second parent is circularly swept 
from position j + 1 in order to complete the offspring solution. 
The way to represent a solution, and such a crossover, strongly 
help in preserving the diversity of the population. 

D. Diversification of the Search 
A solution method should be able to explore solutions far 

away from those already visited.  
On the one hand, when considering local search techniques, 

the distance between two solutions can be measured by the 
minimum number of moves which are necessary to transform 
one solution to the other. The associated computation is 
however intractable in most cases. Therefore, distances which 
are independent of the moves are generally more relevant. 
Such distance functions can help in guiding the search towards 
new and promising areas of the solution space.  

On the other hand, in most of the population based methods, 
the cooperation phase has a diversification role: the popular 
one-point or two-point or uniform crossovers used in genetic 
algorithms lead to the generation of an offspring solution 
which is usually very different from its parent solutions.  

For the VRP, in [18], a diversification strategy consists of 
adding a term to the objective function, which penalizes the 
movement of specific vertices (from their position in their 
route) which were frequently moved during previous search. 
This encourages other vertices to be moved, and thus favors 
the exploration of new parts of the solution space. 

IV. TAKING ADVANTAGE OF THE PROBLEM STRUCTURE 
In this section are presented key ideas which are useful 

when designing VRP metaheuristics which are able to take 
advantage of the problem structure.  

A. Choice of the Solution Space 
The representation of a solution should incorporate the 

properties of the problem. For example, the most efficient 
genetic algorithms do not use binary vectors to represent a 
solution, but are based on an encoding that undertakes to 
capture essential features of the problem structure. Once a 
solution representation has been selected, the solution space of 
the problem can be defined, which is the set of all the 
solutions of the problem.  
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For the VRP, the most straightforward way to represent a 
solution is to indicate, for each vehicle, the sequence of the 
visited customers. In other words, for each vehicle, its route is 
known. In contrast, the memetic algorithm proposed in [32] is 
based on the permutation approach (as described in subsection 
III.D). Even if it is a non-natural representation, it is helpful 
for the design of a specialized crossover operator. 

B. Use Repairing Moves 
A local search should use repairing moves: at least a 

drawback of the current solution should be removed from it 
when generating the neighbor solution, even if several new 
drawbacks are created in the latter. It also helps to escape from 
local optima and to increase the robustness of the method. If 
repairing moves are difficult to design (because it is difficult 
to locate a drawback in the solution), an idea is to use moves 
which do not deteriorate too much the quality of the current 
solution, based on the properties of the considered problem. 

For the VRP, a powerful neighborhood structure is 
proposed in TABUROUTE, where a move consists in putting 
a vertex x in a new route, which contains one of the closest 
vertex to x, by means of an efficient generalized insertion 
procedure called GENI [33]. 

C. Handle Relevant Information along the Search Process 
The nature of the information transmitted during the 

cooperation phase of an evolutionary algorithm should be 
based on the properties of the considered problem. In general, 
as mentioned in [34], the crossover operator is regarded as a 
main genetic operator and the performance of the genetic 
algorithms depends on the performance of the used crossover 
operator. Specialized crossovers have been successfully 
proposed for genetic algorithms for various problems, which 
lead to much better results than the ones obtained with 
uniform, 1-point or 2-points crossovers. 

For the VRP, in the adaptive memory algorithm proposed in 
[35] (an adaptive memory algorithm can be seen as a 
generalization of a genetic algorithm, where the recombination 
operator is not limited to two parents and a local search 
procedure is used for the self-adaptation phase), an offspring 
solution is built route by route by taking them from the central 
memory M, while giving more chance to good routes to be 
selected (the value of a route is defined according to the value 
of the solution it belongs). While taking routes, an effort is 
made to avoid selecting routes with customers belonging to 
the current offspring solution. At the end of the process, a tabu 
search procedure builds a solution with the selected routes 
from M and the remaining unassigned customers. In contrast, 
the adaptive memory proposed in [36] does not combine full 
vehicle routes, but route segments (called bones) taken from 
good quality routes.  

On the contrary to the two recombination operators 
proposed in [35] and [36], the trail systems proposed in all ant 
algorithms is very limited and do not take advantage of the 
nature of the problem, because only pairs of vertices are 
considered (instead of longer segments or routes) as follows: if 
the previous « good » ants visited customers i and j 

successively, this information should be transmitted to the 
next generations of ants. 

D. Guided Cooperation Phase 
The cooperation phase of an evolutionary algorithm should 

not be equivalent to a restart procedure: an offspring solution 
should have relevant information from the past history.  

For the VRP, this principle is satisfied in the recombination 
proposed in the adaptive memory algorithm developed in [35], 
where full routes are copied from the central memory to 
generate an offspring solution. In contrast, the existing ant 
algorithms do not seem to satisfy this principle, because the 
role of each ant is to build a solution from scratch, based on a 
trail system only involving pairs of vertices. 

V. CONCLUSION 
In this paper are presented various elements which are 

helpful for designing solution methods for combinatorial 
optimization problems. The discussion is illustrated for the 
vehicle routing problem for which numerous metaheuristics 
have been proposed. Some of these metaheuristics are 
discussed according to various criteria which can measure 
their quality: speed, robustness, and the ability to take 
advantage of the problem structure. Despite of their relevance, 
these three criteria are often underestimated when analyzing 
the obtained results of an algorithm. It is difficult to develop a 
metaheuristic which has a good performance according to all 
the performance criteria. However, for a given optimization 
problem, a given computation time limit, and a given deadline 
to develop a solution method, the elements proposed in this 
paper should help in the selection of the metaheuristic and the 
ingredients that will be incorporated in it. 
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