
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1620

Abstract—At present, dictionary attack has been the basic tool for

recovering key passwords. In order to avoid dictionary attack, users
purposely choose another character strings as passwords. According to
statistics, about 14% of users choose keys on a keyboard (Kkey, for
short) as passwords. This paper develops a framework system to attack
the password chosen from Kkeys and analyzes its efficiency. Within
this system, we build up keyboard rules using the adjacent and parallel
relationship among Kkeys and then use these Kkey rules to generate
password databases by depth-first search method. According to the
experiment results, we find the key space of databases derived from
these Kkey rules that could be far smaller than the password databases
generated within brute-force attack, thus effectively narrowing down
the scope of attack research. Taking one general Kkey rule, the
combinations in all printable characters (94 types) with Kkey adjacent
and parallel relationship, as an example, the derived key space is about
240 smaller than those in brute-force attack. In addition, we
demonstrate the method's practicality and value by successfully
cracking the access password to UNIX and PC using the password
databases created

Keywords—Brute-force attack, dictionary attack, depth-first
search, password attack.

I. INTRODUCTION

A. Background
URRENTLY the so-called brute-force attack is the most
powerful method of attack among the various types of

cryptanalytic attack, because brute-force attack is able to find
out what the password is regardless of how it was set
previously; however, the increase in password length means
that the key space which brutal force attack must search
through also grows proportionally to an exponential form,
rendering this method inefficient. For example, the number of
combination for a password length of 4 digits ranging from 0 to
9 is only 104; but once the length is increased to 8 digits ranging
from 0 to 9, the number of combinations becomes 108, which is
104 times larger than the original 104. Based on this, one must
try and reduce the size of password space in order to reduce the
computational complexity in cryptanalysis.

H. C. Chou is with the Department of Computer Science and Information

Engineering, National Taiwan University, Taiwan (e-mail:
d96922034@csie.ntu.edu.tw).

F. P. Lai is with Graduate institute of Biomedical Electronics and
Bioinformatics, National Taiwan University, Taiwan (e-mail: flai@
ntu.edu.tw).

H. C. Lee is with Department of Information Management, Tamkang
University, Taiwan (e-mail: hclee@mail.im.tku.edu.tw).

B. Motivation
Dictionary attack [1, 2, 3, 4] can be considered as a simplified
method of brute-force attack. It is based on the principle that
people generally have a habit of using meaningful characters
such as English names, nicknames, date of birth, and ID
number in setting a password. By using the extensive amount of
information collected on these types of characters during
password cracking, it will greatly reduce the size of password
space in dictionary attack and, therefore, have the better chance
of finding the correct password.

This paper can also be regarded as another simplified
version of brute-force attack. Although it shared a common
feature of reduced password space with the dictionary attack,
our scheme differs from the dictionary attack in that rather than
using meaningful continuous characters as a search criteria, this
method uses each key on a keyboard(Kkey, for short) and its
adjacent/parallel relationship as search criteria. As meaningless
continuous characters is not easily remembered and provide an
necessity to prevent dictionary attack, the general users are
bound to come up with other methods of generating
meaningless continuous characters; key position on a keyboard
provides a good choice, as one can generate a long list of
seemingly meaningless character groups for as long as one
remembers the starting position and movement trajectory.

This paper is designed around the concept of generating a
password space using a keyboard, so that the generated
password space will include the actual password that is created
based on a keyboard, thus fulfilling the objective of simplifying
the recovery password process. In order to achieve this
objective, two major steps are designed in this paper. The first
step involved the definition of keyboard rules that contains the
various character combinations and the Kkey position among
them. In Kkey position, two most commonly seen relationships
are discussed, namely adjacent relationship and parallel
relationship. Adjacent relationship refers to lowercase
characters that are adjacent to one character, such as "r", "t",
"y", "f", "h", "v", "b", and "n" to "g", while parallel relationship
refers to character strings that are parallel to each other, such as
"wsx", "edc", "`rfv", and so on that are parallel to "qaz". The
second step used the keyboard rules defined in the first step to
generate the required password databases according to user
requirements.

C. Structure
The content of this paper is structured and organized as

follows: Section II describes the relevant research done on

How Efficiency of Password Attack Based on a
Keyboard

Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1621

password attack. Section III explains the principles and
methods of our scheme. Section IV contains the
implementation and analysis of our scheme. Section V uses
examples to describe the practical application of our scheme.
Section VI contains the conclusions and future work.

II. RELATED RESEARCH
In recent years, the use of passwords for identity

authentication or data encryption is becoming the most
commonly used means of information security [5, 6, 7].
However, according to statistics from hacker websites, about
30% of users prefer to use their own familiar numbers or
characters as a password, such as identity card numbers, date of
birth, phone numbers, license plate numbers, and so on. There
are even as high as 14% of users who use keys on a keyboard as
passwords. In principle, if a user sets a password for the sake of
convenience by following one of the above methods, it is very
possible that he/she may be under the threat of hacker attacks.

Currently most identity authentication attacks through
passwords are still based on either dictionary attack or
brute-force attack; although other attack methods such as
time-memory tradeoff [8] are gradually gaining importance as
the computing performance and hard disk space continue to
expand. At present, most identity authentication mechanism
will first produce a 128-bit hash value through hash function,
and the most famous hash functions are MD5 and SHA1. In
time-memory tradeoff attacks, all possible passwords generated
beforehand are stored in a hard disk using hash values produced
by hash function. When the attacker guesses a password, all
he/she has to do is comparing whether the hash value is correct.
This will not only speed up the attack speed, but will also
improve the chances of cracking a password. The hash values
produced using this method is the famous Rainbow tables [9].

In addition, many commercial software development
companies such as Elcomsoft [10], Passware [11], wwwhack
[12], have developed powerful recovery password software
against documents that use character string as data encryption,
such as Word, Excel, PDF, RAR, ZIP encryption files.
However, most of this recovery password software still bases
its means of attack on dictionary attack or brute-force attack.

Most of the current dictionary attacks use a collection of
commonly used characters in a variety of languages as the
dictionary database, which contains mostly single type
characters such as the lowercase characters, and rarely
combinations of two or more characters, such as numbers plus
lowercase characters. In view of the increasing importance
attached to information security, users are bound to become
more and more cautious in the choice of password, posing more
and more challenges on the conventional dictionary-based
means of attack.

Although the dictionary database generated by a keyboard
can be described as a kind of dictionary attack, but the study has
found that thus far there is virtually no trace of discussion on
how to take advantage of this technique in guessed passwords
in any paper or explored by any scholar. Most of the studies on
a keyboard are confined to physical attack, namely an attacker
analyzes the possible characters [13] the user entered by
logging the key stroke sound.

For exploring the relevant techniques based on a keyboard,
this paper uses adjacent and parallel relationships on a
keyboard to generate password databases, and successfully
applied them in the attached research on UNIX and PC access
passwords.

III. PRINCIPLES AND METHODS

A. Keyboard relationships
"Password attack based on a keyboard" is a methodology of

guessed passwords using key position on a keyboard as a way
in formatting password. The most common key position on a
keyboard can be divided into adjacent and parallel relationship,
which are explored and described in this paper as follows:

A.1 Adjacent relationship among keys on a keyboard
Definition 1. Adjacent relationship among keys means that

two consecutive characters of keys corresponding to key
position on a keyboard are adjacent.

Character strings such as hjki is the example of this adjacent
relationship, as shown in Fig. 1.

Lemma 1. According to the definition 1, the characters of
each key on a keyboard can contact with their adjacent
characters.

For example, the character "s" contacts with "w", "e", "d",
"x", "z", "a" characters which are adjacent to it, as shown in
Fig. 1.

Fig. 1 Adjacent relationship among keys on a keyboard.

A.2 Parallel relationship among keys on a keyboard
Definition 2. Parallel relationship among keys means that n

character strings (n>1) of keys corresponding to key position
on a keyboard are parallel.

For example, the relationship between character string qwe
and asd is a parallel one, and so is the relationship between

character string uhb and okm, as shown in Fig. 2.

Fig. 2. Parallel relationship among keys on a keyboard.

1 2 3

4

1 2 3

4

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1622

B. Establishing key adjacent and parallel rules
Modern consumer electronics device such as desk-top

computer, notebook, PDA and handset, have their own unique
keyboard edition function, although the position of keys on
those keyboards differ from each other slightly. To design a
general system for these keyboards, we use two definition files
to mark key information on a keyboard. The position file is to
record relative position of each character and the symbol one is
to record characters derived from each key. By using these two
files, the system can then generate the key adjacent and parallel
rules as described above. We use standard computer keyboard
as an example, and the defined files (specifically, keyposition,
keysymbol) as shown in TABLE 1 and TABLE 2.

TABLE 1 THE KEYPOSITION FILE

The first row records right-left top-bottom characters. The
second row records upper-left lower-right parallel characters.
The third row records upper-right lower-left para-llel
characters.

TABLE II THE KEYSYMBOL FILE
`
~

1
!

2
@

3

4
$

5
%

6
^

7
&

8
*

9
(

0
)

-
_

=
+

q
Q

w
W

e
E

r
R

t
T

y
Y

u
U

i
I

o
O

p
P

[
{

]
}

\
|

a
A

s
S

d
D

f
F

g
G

h
H

j
J

k
K

l
L

;
:

'
"

z
Z

x
X

c
C

v
V

b
B

n
N

m
M

,
<

.
>

/
?

B.1 Generating key adjacent rules according to adjacent
relationship

Once we are in control of the adjacent relationship between
each character on a keyboard, we can then go ahead and
establish all possible password combinations based on this
relationship. For example, the character "w" has two types on a
keyboard, namely "w" and "W", and its adjacent characters
include "2", "3", "q", "e", "a", "s", "@", "#", "Q", "E", "A", and
"S" 12 possible characters. In terms of adjacent relationship
among keys, if the previous character in the password is "w" or
"W", then the next character may be one of the mentioned
above characters, that is, if □ in character string aqw□ is the
next character of "w", then its possible characters will include
password combinations made up of numbers, lowercase
characters, uppercase characters, and special printable
characters, as shown in Fig. 3. It can be seen that, the more
complex the user's password combination is, the more complex
the relative rules based on key adjacency will be.

Fig. 3 Key adjacent rules on a keyboard

B.2 Generating key parallel rules according to parallel
relationship

As far as parallel relationship on a keyboard is concerned,
because at least two characters of relationship are required, one
needs to move forward and look up at least one more character.
For example, if the character before "w" is "q", then all
horizontally arranged two characters from left to right are likely
to be the next character group to emerge. Taking the 3-digit
horizontal character string of qwe as an example, other likely
character strings parallel to qwe include various combinations
made up of numbers, lowercase characters, uppercase
characters, and special characters, partial character strings as
shown below.

123, 234, 345, 456, 567, 678, 789, 890 (numbers)

qwe, wer, ert, rty, tyu, yui, uio, iop (lowercase characters)

asd, sdf, dfg, fgh, ghj, hjk, jkl (lowercase characters)

zxc, xcv, cvb, vbn, bnm (lowercase characters)

!@#, @#$, #$%, $%^, %^&, ^&*, &*(, *(), ()_,)_+ (special characters)

QWE, WER, ERT,RTY, TYU, YUI, UIO, IOP (uppercase characters)

ASD, SDF, DFG, FGH, GHJ, HJK, JKL (uppercase characters)

ZXC, XCV, CVB, VBN, BNM (uppercase characters)

In addition to horizontal parallel, other parallel relationships
on a keyboard include upper-left lower-right parallel and
upper-right lower left parallel. Examples of 4-digit upper-left
lower-right parallel characters include 1qaz, 2wsx, and 3edc,
etc, while 0okm, 9ijn, and 8uhb are 4-digit upper-right
lower-left parallel characters as shown in Fig. 4.

Fig. 4. Key parallel rules on a keyboard.

`1234567890-= qwertyuiop[]\ asdfghjkl;' zxcvbnm,./
1qaz 2wsx 3edc 4rfv 5tgb 6yhn 7ujm 8ik, 9ol. 0p;/ -[' =]
]'/ =[;. -pl, 0okm 9ijn 8uhb 7ygv 6tfc 5rdx 4esz 3wa 2q

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1623

B.3 Combinations of character types on a keyboard
In Sections A and B, we introduced how to establish key

rules through the method of key adjacent and parallel
relationship, but in practice, there is still one issue that we need
to consider when building key rules, that is combinations of
character types. In standard computer keyboard, character
types include numbers, lowercase characters, uppercase
characters, and special characters. There are a total of 94
characters excluding the space key.

In order to improve flexibility in the building of key adjacent
and parallel rules, the decision of combinations of character
types has been given to the users, that is they are permitted to
choose either one or more than two types of the above
characters for the combination. In particular, if users have
already observed a user encryption habit, it is then possible to
build key rules by selecting the possible character types. Fifteen
possible combinations of character types are listed in TABLE 3.

TABLE III COMBINATIONS OF CHARACTER TYPES ON A KEYBOARD

Item Character combinations Number
1 Number 10
2 Lowercase characters 26
3 Uppercase characters 26
4 Special characters 32
5 Numbers + lowercase characters 36
6 Numbers + uppercase characters 36
7 Numbers + special characters 42

8 Lowercase characters + uppercase
characters 52

9 Lowercase characters + special 58
10 Uppercase characters + special 58

11 Numbers + lowercase characters +
uppercase characters 68

12 Numbers + lowercase characters +
special characters 68

13 Numbers + uppercase characters +
special characters 68

14 Lowercase characters + uppercase
characters + special characters 84

15 Numbers + lowercase characters +
uppercase characters + special characters 94

C. Generating password databases
In Section B, we introduced how to create Kkey rules

through key adjacent and parallel relationship. Once the rules
are established, we can then generate password databases from
the rules. Since the established rules can be regarded as a search
tree, we may use depth-first search [14,15] or breadth-first
search [14,15] to generate password databases.

In order to generate a set of password database that can best
meet the actual needs of the users, the choice of combination
for generating the password database will be given to the users
as much as possible to maximize the flexibility of this method
of attack. The choice items include:

a. Key relationship: adjacent or parallel relationship;
b. Password length: fixed or non-fixed password length;

c. First character: the starting character or an empty string;
d. Output format: the output to a file or directly contact

callback function.
There are several features in allowing the users to set the

mentioned above four options:

1. Key adjacent or parallel relationship will affect the size of
password space created. According to Section 3.2, under
same password length, the password space established
through adjacent relationship is far greater than the one
established through parallel relationship. It will increase
the password space drastically if both are taken into
consideration at the same time. Therefore, the password
database is generated by letting the users to select either the
adjacent or parallel relationship according to the flexibility
of time and space.

2. If the users are familiar with the password length or likely
range for guessing, password database can then be
established through the method of setting password length
or interval, as this can greatly reduce the password space
and enhance the efficiency of an attack.

3. If users are aware of some information that relates to the
password to be guessed, such as the password's first
character is known, then such information can be utilized
to reduce the complexity of the password database created
and to reduce password search time.

4. Once a password database is created based on the user
choice, it can either be exported to a specific file or feed
directly into the target for verification. The benefit of the
former is that one will only need to create the database
once for the same set of conditions and such database can
be reused continuously. The later is suitable to when the
generated database is too large for the memory, but the
database has to be regenerated each time.

IV. IMPLEMENTATION AND ANALYSIS
In Section III, we introduced the principles and methods in

establishing password database through key adjacent and
parallel relationship. In this section, the focus will be on actual
program exploitation and experiment test. First of all, key rules
must be created according to key adjacent and parallel
relationship, which will then be used to generate password
databases. The entirely diagram is shown in Fig. 5.

A. Establishing key rules according to the adjacent and
parallel relationship
According to the adjacent and parallel relationship on a

keyboard and combinations of character types, we exploit the
program to establish the key rules. The algorithm is as
follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1624

Fig. 5. The design diagram of our scheme.

KeyboardRule Algorithm. Establish the key adjacent/parallel
rules.
Input:

 keyposition and keysymbol file.
 adjacent/parallel relationship.
 character length.
 combinations of character types:

- 1: uppercase characters (uppercases, abbreviated as U), a total of 26
characters.

- 2: lowercase characters (lowercases, abbreviated as L), a total of 26
characters.

- 4: numbers (numbers, abbreviated as N), a total of 10 characters.
- 8: other visible characters (others abbreviated as O), a total of 32

characters.
Output: the key adjacent/ parallel rules
 KeySymbol keysymbol file

KeyPosition keyposition file
if (character length ==1) then

 Inference, InferenceSize key adjacent relationship in KeySymbol and
KeyPosition

 else
 Inference, InferenceSize key parallel relationship in KeySymbol and

KeyPosition
 end if

for i 0 up to InferenceSize do
 while (Inference !=0)
 generate the key adjacent/parallel rules

 end while
end for

Let us use two examples to describe how key rules are

generated through key adjacent or parallel relationship:
1. KeyboardRule.exe -n -f 7 -r rule.ne_NLU

Use key adjacent relationship, numbers, lowercase characters,
and uppercase characters to generate the key adjacent rule
rule.ne_NLU.

2. KeyboardRule.exe -p 3 -f 1 -r rule.pa3_U
Select parallel length of three characters together with uppercase
characters according to key parallel relationship to generate the
key parallel rule rule.pa3_U.

B. Generating password databases according to the key
rules

When the key adjacent/parallel rules are established, we can
then use these rules to generate password databases. The
algorithm is as follows:
 KBGuessPW Algorithm. Generate the password databases.
Input:

 key adjacent or parallel rules
 initial character string
 length of passwords generated

- w: length of passwords generated equals to w.
- W: length of passwords generated is less than or equal to W.
 type of exporting passwords.

- NONE: do not export and use to calculate number of password set.
- FILE: export to specified file.
- FUNC: directly contact callback function.

Output: the password databases
 rulefile key adjacent or parallel rule
initPat initial character string
PwdLen length of passwords generated
RulePattern, RuleSize rulefile
for i=0 up to RuleSize do
 run depth-first search by recursive function Rulepattern
 end for

Let us also use two examples to describe the method of
generating password databases through adjacent or parallel
relationship:

1. KBGuessPW.exe -r rule.ne_NLU -W 8 –o FILE
GuessPW_ne_NLU_W8
Use the adjacent rule generated with numbers, lowercase
characters, and uppercase characters to generate password
database that contains length of equal or less than 8 characters,
and output to the file GuessPW_ne_NLU_W8.

2. KBGuessPW.exe -r rule.pa3_U -W 5 –o FILE
GuessPW_pa3_U_W5
Use the 3-character parallel rule generated with uppercase
characters to generate password database that contains length of
equal or less than 5 characters, and output to the file
GuessPW_pa3_U_W5.

C. Experiment results

C.1 Generating password databases through key adjacent
relationship

To better explain the experiment results in the generation of
password databases through key adjacent relationship, this
paper has chosen 5 of character combinations out of 15 to
generate a list of password databases, and these are U, NU,

Set keyposition
Set keysymbol

Execute
KeyBoardRule algorithm

Execute
KBGuessPW algorithm

Generate
key adjacent/parallel rules

Generate
key adjacent password databases

or
key parallel password databases

1. assign combination of character types.
2. assign the adjacent/parallel length.

1. assign initial character string or empty.
2. assign length of generated passwords.
3. assign output type: NONE/FILE/FUNC.

FILE

Callback
function

FUNC

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1625

NLU, ONL, and ONLU, with password length of between 5 to
16 characters. For better observation and comparison, the
logarithm to the base 2 is used to represent the list of passwords
as shown in TABLE 4, while a bar graph Fig. 6 is also prepared,
where the horizontal axis indicates character length and the
vertical axis indicates the number of passwords. From the
analysis, it is found that as the password length increases, the
resulted number of passwords also increases proportionally,
especially when the character combinations are more complex,
such as the case of ONLU, the derived number of passwords is
also bigger. Take password length of 15 characters as an
example, the number of passwords generated is between 239.36
and 256.8. Fig. 7 is a list of passwords generated using arbitrary
relationship, namely the brute-force method. When we again
take the password length of 15 characters as an example, the
number of passwords generated is between 270 and 298. As a
result, it became obvious that even the number of passwords
generated through key adjacent relationship remains large, it is
already far smaller than the number of passwords generated
through brute-force method.

TABLE IV THE NUMBER OF PASSWORDS GENERATED THROUGH KEY ADJACENT

RELATIONSHIP

Pwd
length

log 2 (number of guessing password
combination)

5 20.78 18.39 19.82 15.37 14.49
6 24.39 21.56 23.34 17.96 16.97
7 27.99 24.75 26.85 20.55 19.46
8 31.60 27.96 30.38 23.14 21.95
9 35.21 31.20 33.90 25.74 24.45
10 38.81 34.45 37.43 28.33 26.93
11 42.41 37.69 40.95 30.93 29.42
12 46.01 40.94 44.47 33.53 31.90
13 49.61 44.19 48.00 36.13 34.39
14 53.20 47.44 51.52 38.72 36.87
15 56.80 50.68 55.04 41.32 39.36
16 60.40 53.93 58.57 43.92 41.84

Fig. 6. The number of passwords generated through key adjacent
relationship.

Fig. 7. The number of passwords generated through key arbitrary
relationship.

C.2 Generating password databases through key parallel
relationship
In our experiment, key parallel relationship of 2 parallel

characters, 3 parallel characters, 4 parallel characters, and 5
parallel characters are chosen and used to establish parallel
relationship key rules in character combination ONLU, which
are then used to generate password databases respectively, as
shown in Fig. 8. It should be noted that, 2 to 4 parallel
characters include horizontal parallel, upper-left lower-right
parallel, and upper-right lower-left parallel, while there is only
horizontal parallel in 5 parallel characters. Therefore, the
number of passwords generated is also relatively much less.

Fig. 8. The number of passwords generated with 2 to 5 parallel
characters.

D. Comparative Analysis
As to the experiment results in Section C, the number of

password database generated through key adjacent and 2 to 5
parallel characters relationship is compiled together with
considerations of all extreme cases of ONLU combination of
character of which the length is between 5 and 16 as shown in
TABLE 5. A bar graph is also prepared as shown in Fig. 9. The
figures also listed the number of resulted passwords under the
conditions of no assumption, namely the so-called brute-force
method. A few characteristics can be summarized by analyzing
TABLE 5 and Fig. 9:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1626

1. The number of password database established through key
adjacent or parallel relationship is far smaller than that of
the brute-force method. It is found that when character
length equals 16, the number of passwords is reduced from
2104.87 to 2 60.4; this figure can even be reduced further to
237.53 if viewed from the point of 4 characters in parallel.

2. The number of passwords generated through adjacency and
2 characters in parallel are almost the same due to the fact
that 2 characters in parallel can also be regarded as an
adjacent relationship. The number of passwords generated
through 5 characters in parallel is greatly reduced
compared to 3 and 4 characters in parallel, as there is only
horizontal parallel in 5 characters in parallel, while there
are horizontal, upper-left lower-right, and upper-right
lower-left parallel types in 3 and 4 characters in parallel.

If the extreme case in character combination ONLU is taken
into consideration, the number of passwords generated through
adjacency or 2 characters in parallel will have already exceeded
240 when character length is longer than 10 characters, and even
so, they are still far less than the number generated through
brute-force method. Nevertheless, the number is significant. In
order to reduce the number, one may choose the relatively
simple character combinations, such as the single character U,
N, L, and O, or the double characters such as UN, UL, LO and
so on. In principle, there is a trade-off relationship between
character length and character combinations, which may be a
choice left for the users to make according to the actual needs.

TABLE V THE NUMBER OF PASSWORDS GENERATED BY ADJACENT AND
PARALLEL RULES WITH ONLU COMBINATION, LENGTH IS BETWEEN 5 AND 16

ONLU
None

(brute-
force)

Adjacency Parallel
2

Parallel
 3

Parallel
4

Parallel
 5

5 32.77 20.78 10.95
6 39.32 24.36 24.17 18.20
7 45.88 27.99
8 52.43 31.59 31.43 19.45
9 58.99 35.28 26.22

10 65.54 38.80 38.715 20.90
11 72.10 42.40
12 78.65 46.00 46.01 34.34 28.44
13 85.20 49.60
14 91.76 53.20 53.34
15 98.31 56.80 42.53 30.869
16 104.8 60.40 60.69 37.53

Fig. 9. The number of passwords generated by adjacent/parallel rules
with ONLU combination, length is between 5 and 16.

V. PRACTICAL APPLICATION
The section describes how the password database generated

through key position is used by this paper to successfully crack
the universal passwords of UNIX and PC.

A. UNIX universal password attack
The unshadow function in John the Ripper software [16] is

used to gather user account numbers and encrypted account
passwords in UNIX, and the syntax is as follows:

Usrpasswd content type is as follows:

If semi-colon ":" is used as a separator symbol, the first field
as the account number, such as root and test, and the second
field as the encrypted account passwords, such as
xXjU16uYYiBVc and j1iruP0Atc3E., this password is then
encrypted through DES into a 13-byte encrypted password.

For better explanation, a set of functions provided by John
the Ripper software is incorporated into the study for the attack,
and syntax is as follows:

Word_p4_nl_W8 is the password file generated through our

method, meaning the 8-character password file generated
through the combination of 4 characters in parallel, numbers,
and lowercase characters, and the user account numbers and
encrypted account passwords gathered by Usrpasswd. Execute
the above syntax, and the program will stop execution and
output the password as soon as the password is cracked.
Through the above method, the account password for user
account "test" is found to be 1qaz2wsx, which is a password
based on key parallel relationship and four characters.

 unshadow /etc/passwd /etc/shadow > Usrpasswd

root:xXjU16uYYiBVc:0:0:Super-User:/:/sbin/sh
test:j1iruP0Atc3E.:64002:64001:test:/home/test:/bin/bash

John.exe --wordlist=Word_p4_nl_W8 --rules Usrpasswd

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1627

B. PC universal password attack
The type of results received from using Pwdump software

[17] to gather user's account numbers and encrypted account
passwords in personal computers is as the following,
represented in Usrpasswd name.

The user passwords in a personal computer are 128-bit hash

values produced through hash function. Once the user account
name and encrypted account password of a certain PC are
obtained, one can also try and guess the password using our
method introduced in this study. Working with the John the
Ripper software, the attack syntax is as follows:

Word_p3_nl_W6 is the password file generated through our

method, meaning the 6-character password file generated
through the combination of 3 characters in parallel, numbers,
and lowercase characters, and the user account names and
encrypted account passwords gathered by Usrpasswd. Through
the above method, the account password for user account
"Joseph" is found to be qweasd, which is a password based on
key parallel relationship and three characters.

VI. CONCLUSIONS AND FUTURE WORK
Many papers on password attack have classified key

arrangement as a method of guessed passwords and a type of
dictionary attack. However, they have not discussed its
technical methods, and nor have they produced any specific
and usable password database except theoretical discussions.

This paper explores the actual techniques and experiment
results in password attack based on a keyboard. By first
establishing a corresponding key rule through key adjacent and
parallel relationship and uses the rule to generate password
database, this paper has successfully applied the method in
cracking UNIX and PC account passwords. The contributions
made by this paper can be grouped into three points:

1. Practical research: This paper proposes a complete technique

for password attack based on a keyboard, through which one
can establish the required key rules and provide the user with
a flexible way of selecting and generating the needed
passwords according to practical needs.

2. Design and implementation: According to our experiential
results, we have confirmed that the password database
generated is far smaller than that of brute-force method,
effectively reducing the password space. Taking the
combinations of all printable characters as an example, the
password database generated in this study is about 240 smaller

than the one by brute-force method.
3. Application: The success achieved by this paper in cracking

UNIX and PC passwords using the password databases
generated based on a keyboard is a demonstration of this
method's practicality.

At present, this password attack based on a keyboard developed
by this paper can already be applied in cracking various
passwords. In our experience, when password length exceeds
10 characters, the established password space will increase
substantially. The future study will focus on the possibility of
adding restriction rules in key adjacency in order to reduce the
password space.

REFERENCES
[1] Http://www.tech-faq.com/dictionary-attack.shtml.
[2] Password Cracking Wordlist. http: //www.openwall. com/wordlists/.
[3] Password Safe, http://passwordsafe. sourceforge.net/.
[4] Yahoo News. Favorite passwords: ‘‘1234’’ and ‘‘password’’, http://

news. yahoo.com, Feb 2009.
[5] Alain Forget, Robert Biddle, Memorability of persuasive passwords, CHI

'08 extended abstracts on Human factors in computing systems, April
05-10, 2008, Florence, Italy.

[6] Mohammad Mannan, P. C. van Oorschot, Digital objects as passwords,
Proceedings of the 3rd conference on Hot topics in security, p.1-6, July
29, 2008, San Jose, CA.

[7] Lorrie Faith Cranor, A framework for reasoning about the human in the
loop, Proceedings of the 1st Conference on Usability, Psychology, and
Security, p.1-15, April 14-14, 2008, San Francisco, California.

[8] Vrizlynn L. L. Thing, Hwei-Meng Ying, A novel time-memory tradeoff
method for password recovery, June 2009.

[9] Project RainbowCrack website, http://project-rainbowcrack.com/.
[10] ElcomSoft password recovery tools, http://www.elcomsoft.com/.
[11] Password recovery software, http:// www.lostpassword.com/.
[12] Password recovery software, http:// www.wwwhack.com/.
[13] Lizuang, Feng Zhou, and J.D.Tygar, University of California, Berkeley,

Keyboard Acoustic Emanations Revisited, ACM Transactions on
Information and System Security, Vol. 13, No. 1, Article 3, October 2009.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein, Introduction to Algorithm, 2nd Ed, 2001

[15] S. Russel and P. Norvig, Artificial Intelligence, a modern approach, 2nd
Ed, 2006

[16] John the Ripper. Password cracker, http://www.openwall.com. LCPSoft.
Lcpsoft programs, http://www.lcpsoft.com.

[17] Pwdump7 by Andres Tarasco Acuna, Windows NT family, up through
XP or Vista.
http://passwords.openwall.net/microsoft-windows-nt-2000-xp-2003-vist
a.

Hsien-Cheng Chou was born in Taipei, Tainan, R.O.C., in 1970. He received
Master’s degree from the Department of Computer Science and Information
Engineering, National Taiwan Normal University, Taipei, Taiwan in 2003. He
is currently working toward the Ph.D. degree at the Department of Computer
Science and Information Engineering, National Taiwan University, Taipei,
Taiwan.
 He is currently an Engineer in National Central University. His current
research interests include cryptography, cryptanalysis, parallel computing and
software system.

John.exe --wordlist= Word_p3_nl_w6 --rules Usrpasswd

Administrator:500:8E4CC2363EA418C7AAD3B435B5
1404EE:302A4E27EEF7199FA75574956B9F8BA4:::
Joseph:1009:8E4CC2363EA418C7AAD3B435B51404E
E:302A4E27EEF7199FA75574956B9F8BA4:::
Test:1010:49D58563113416EBAAD3B435B51404EE:9
B77377DEE674B5106D13FCB626D5C40:::

