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Hopf Bifurcation Analysis for a Delayed
Predator–prey System with Stage Structure

Kejun Zhuang

Abstract—In this paper, a delayed predator–prey system with stage
structure is investigated. Sufficient conditions for the system to have
multiple periodic solutions are obtained when the delay is sufficiently
large by applying Bendixson’s criterion. Further, some numerical
examples are given.

Keywords—Predator-prey system, Stage structure, Hopf bifurca-
tion, Periodic solutions.

I. INTRODUCTION

S INCE Aiello and Freedman proposed and studied the well-
known single species model with delay and stage structure

in [1], people have payed great attention to stage-structured
population dynamics and obtained significant results, see [2]–
[4] and the references therein. This is not only because they
are simpler than the models governed by partial differential
equations, but also they can exhibit phenomena similar to those
of partial differential models.

In 1997, Wang and Chen constructed a predator-prey system
with stage structure for predator as follows,⎧⎨

⎩
ẋ(t) = x(t) (r − ax(t− τ1) − by2(t)) ,
ẏ1(t) = kbx(t− τ2)y2(t− τ2) − (D + ν1)y1(t),
ẏ2(t) = Dy1(t) − ν2y2(t),

(1)

where x(t) denotes the density of prey at time t, y1(t) denotes
the density of immature predator at time t , y2(t) denotes
the density of mature predator at time t, constant τ1 ≥ 0
corresponds to the time delay in the feedback of prey’s density
and constant τ2 ≥ 0 denotes the time delay due to gestation
of mature predator. All coefficients are positive constants and
the detailed ecological meanings can be found in [5].

For (1), Wang and Chen studied the permanence and global
stability of positive equilibrium, and obtained the existence
of orbitally asymptotically stable periodic solutions without
time delays. And it shows that stage structure can be a cause
of periodic oscillation and can make the population behavior
more complex. Further, existence and global stability for the
corresponding nonautonomous systems were derived in [6]
by using Mawhin’s continuation theorem and constructing a
suitable Lyapunov functional respectively. However, there are
few results about the properties of positive equilibrium as time
delay varies. To reduce the complexity of the analysis, we
mainly consider the following system,⎧⎨

⎩
ẋ(t) = x(t) (r − ax(t) − by2(t)) ,
ẏ1(t) = kbx(t− τ)y2(t− τ) − (D + ν1)y1(t),
ẏ2(t) = Dy1(t) − ν2y2(t),

(2)
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if τ equals to 0 and each predator has the same vital rates,
(2) can be reduced to the classical Lotka–Volterra model. So
in this paper, to generalize the related results in [5], we shall
concentrate on the local and global existences of bifurcating
periodic solutions for (2) while τ is regarded as the parameter.

The paper is organized as follows. In the next section,
sufficient conditions for existence of local Hopf bifurcation are
obtained. In Section 3, global existence of multiple periodic
solutions is discussed. In Section 4, a numerical example is
given to illustrate the theoretical analysis.

II. STABILITY OF POSITIVE EQUILIBRIUM AND EXISTENCE
OF LOCAL HOPF BIFURCATION

It is known that time delay does not change the location
and number of positive equilibrium. According to the results
in [5], we have the following lemma.
Lemma 2.1. Let

r

a
> ν2

D + ν1
kbD

. (3)

Then (2) has the unique positive equilibrium E∗ =

(x∗, y∗1 , y
∗
2), where x∗ = (D+ν1)ν2

kbD , y∗1 = aν2
bD

[
r
a − (D+ν1)ν2

kbD

]
,

y∗2 = a
b

[
r
a − (D+ν1)ν2

kbD

]
.

The linear part of (2) at E∗ is⎧⎨
⎩

ẋ(t) = −ax∗x(t) − bx∗y2(t),
ẏ1(t) = kby∗2x(t− τ) − (D + ν1)y1(t) + kbx∗y2(t− τ),
ẏ2(t) = Dy1(t) − ν2y2(t),

(4)
and the corresponding characteristic equation is

λ3 + (ax∗ +D + ν1 + ν2)λ
2 + [ax∗(D + ν1 + ν2)

+(D + ν1)ν2]λ+ ax∗ν2(D + ν1)
+ [kbDx∗(by∗2 − ax∗) − kbDx∗λ] e−λτ = 0.

(5)

Next, we shall investigate the distribution of roots of (5). When
τ = 0, (5) can be reduced to

λ3+(ax∗+D+ν1+ν2)λ
2+ax∗(D+ν1+ν2)λ+kb2Dx∗y∗2 = 0.

(6)
By Routh–Hurwitz criteria, if

a(ax∗ +D + ν1 + ν2)(D + ν1 + ν2) > kb2Dy∗2 (7)

holds, then all roots of (6) have strictly negative real part. For
simplicity, we denote (5) as follows,

λ3 + a2λ
2 + a1λ+ a0 + (b1λ+ b0)e

−λτ = 0, (8)

where a2 = ax∗ + D + ν1 + ν2, a1 = ax∗(D + ν1 + ν2) +
(D + ν1)ν2, a0 = ax∗ν2(D + ν1), b1 = −kbDx∗, b0 =
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kbDx∗(by∗2 − ax∗). Obviously, λ = iω(ω > 0) is a root of
(8) if and only if

ω3i+a2ω
2 −a1ωi−a0 − (b1ωi+ b0)(cosωτ − i sinωτ) = 0.

(9)
Separating the real part and imaginary part, we can obtain{

a2ω
2 − a0 = b0 cosωτ + b1ω sinωτ,

a1ω − ω3 = b0 sinωτ − b1ω cosωτ,
(10)

and
ω6 + pω4 + qω2 + s = 0, (11)

where p = a2
2 − 2a1, q = a2

1 − 2a0a2 − b21, s = a2
0 − b20. Set

z = ω2, then (11) takes the form

z3 + pz2 + qz + s = 0. (12)

Set h(z) = z3 + pz2 + qz + s.
Lemma 2.2. [7] For (12), we have the following results.
(a) If s < 0 , then (12) has at least one positive root.
(b) If s ≥ 0 and Δ = p2 − 3q ≤ 0 , then (12) has no positive
roots.
(c) If s ≥ 0 and Δ = p2 − 3q > 0 , then (12) has positive
roots if and only if z∗1 = 1

3 (−p+
√

Δ) > 0 and h(z∗1) ≤ 0.
The above lemma can be seen in [7]. Suppose that (12) has

positive roots. Without loss of generality, we assume that it
has three positive roots z1, z2 and z3. Then (11) has three
positive roots ω1 =

√
z1, ω2 =

√
z2 , and ω3 =

√
z3. By (10),

we have

cosωτ =
b1ω

4
k + (a2b0 − a1b1)ω

2
k − a0b0

b20 + b21ω
2
k

.

Thus, if

τ
(j)
k =

1

ωk

{
cos−1

(
b1ω

4
k + (a2b0 − a1b1)ω

2
k − a0b0

b20 + b21ω
2
k

)
+ 2jπ

}
,

(13)
where k = 1, 2, 3 , j = 0, 1, · · · , then ±iωk is a pair of purely
imaginary roots of (8) with τ = τ

(j)
k . Suppose

τ0 = τ
(0)
k0 = min

k∈{1,2,3}

{
τ

(0)
k

}
, ω0 = ωk0. (14)

Thus, by Lemma 2.2 and Corollary 2.4 in [8], we can easily
get the following results.
Lemma 2.3. (a) If s ≥ 0 and Δ = p2 − 3q ≤ 0, then for
any τ ≥ 0, (5) and (6) have the same number of roots with
positive real parts.
(b) If either s < 0 or s ≥ 0 , Δ = p2 − 3q > 0 , z∗1 > 0 , and
h(z∗1) ≤ 0 is satisfied, then (5) and (6) have the same number
of roots with positive real parts when τ ∈ [0, τ0).

Let
λ(τ) = α(τ) + iω(τ)

be the root of (5) satisfying

α
(
τ

(j)
k

)
= 0, ω

(
τ

(j)
k

)
= ωk.

Thus, the following transversality condition holds.
Lemma 2.4. If zk = ω2

k and h′(zk) �= 0, then

dReλ(τ
(j)
k )

dτ
�= 0.

Further, dReλ(τ
(j)
k

)

dτ and h′(zk) �= 0 have same sign.
Proof: By direct computation , we obtain{

3λ2 + 2a2λ+ a1 + [b1 − τ(b1λ+ b0)]e
−λτ

} dλ
dτ

= λ(b1λ+ b0)e
−λτ ,

and(
dλ

dτ

)−1

=
(3λ2 + 2a2λ+ a1)e

λτ

λ(b1λ+ b0)
+

b1
λ(b1λ+ b0)

− τ
λ
. (15)

By (10) ,

[λ(b1λ+ b0)]τ=τ
(j)
k

= −b1ω2
k + ib0ωk, (16)

[(3λ2 + 2a2λ+ a1)e
λτ ]

τ=τ
(j)
k

= [(a1 − 3ω2
k) cosωkτ

(j)
k

−2a2ωk sinωkτ
(j)
k ] + i[2a2ωk cosωkτ

(j)
k

+(a1 − 3ω2
k) sinωkτ

(j)
k ].

(17)
From (15) to (17) , we have[

dReλ(τ)

dτ

]−1

τ=τ
(j)
k

=
zk

Λ
h′(zk),

where Λ =
(
b1ω

2
k

)2
+ (b0ωk)

2. Thus,

sign
[
dReλ(τ)

dτ

]
τ=τ

(j)
k

= sign
[
dReλ(τ)

dτ

]−1

τ=τ
(j)
k

=
zk

Λ
h′(zk) �= 0.

Because Λ, zk > 0, the sign of dReλ(τ
(j)
k

)

dτ is consistent with
that of h′(zk) �= 0. This proves the lemma.

By above analysis, we can obtain the following theorem
about the stability of positive equilibrium and the existence of
periodic solutions for (2) .
Theorem 2.5. If (3) and (7) are satisfied, then the following
results hold.
(a) If s ≥ 0 and Δ = p2−3q ≤ 0, then for any τ ≥ 0, all roots
of (5) have negative real parts. Further, positive equilibrium
of (2) is absolutely stable for τ ≥ 0.
(b) If either s < 0 or z∗1 > 0 , h(z∗1) ≤ 0, r ≥ 0 and
Δ = p2 − 3q > 0 holds , then h(z) has at least one positive
root zk , and when τ ∈ [0, τ

(0)
k ), all roots of (5) have negative

real parts. So the positive equilibrium of (2) is asymptotically
stable for τ ∈ [0, τ

(0)
k ).

(c) If conditions in (b) hold and h′(zk) �= 0, then Hopf bifur-
cation for (2) occurs at positive equilibrium when τ = τ

(j)
k

(j = 0, 1, 2, · · ·), which means that small amplified periodic
solutions will bifurcate from positive equilibrium.

III. EXISTENCE OF GLOBAL HOPF BIFURCATION

Next, we shall establish the existence of global peri-
odic solutions of (2) by ODE’s Bendixson criterion. De-
fine X = C([−τ, 0], R3),

∑
= Cl{(u(t), τ, p) ∈ X ×

R×R+;u(t) is p−periodic solution of (2)}, �(E∗, τ (j)
0 , 2π

ω0
)

is the connected component in
∑

of an isolated cen-
ter (E∗, τ (j)

0 , 2π
ω0

), and �(E∗, τ (j)
0 , 2π

ω0
) is nonempty, where

τ
(j)
0 = 1

ω0

{
cos−1

(
b1ω4

0+(a2b0−a1b1)ω
2
0−a0b0

b20+b21ω2
0

)
+ 2jπ

}
, j =

0, 1, 2, · · · .
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Lemma 3.1. [9] Let D ⊂ Rn be a simply connected region.
Assume that the family of linear systems

z′(t) =
∂f [2]

∂x
(x(t, x0))z(t), x0 ∈ D

is equi-uniformly asymptotically stable. Then
(a) D contains no simple invariant curves including periodic
obits, homoclinic orbits, heteroclinic cycles.
(b) Each semi-orbit in D converges to a single equilibrium.
In particular, If D is positively invariant and contains an
unique equilibrium x̄, then x̄ is globally asymptotically stable
in D.

When τ = 0, (2) is equivalent to⎧⎨
⎩

ẋ(t) = x(t) (r − ax(t) − by2(t)) ,
ẏ1(t) = kbx(t)y2(t) − (D + ν1)y1(t),
ẏ2(t) = Dy1(t) − ν2y2(t),

(18)

We make the following assumptions.
(H1) There exist α, β > 0, such that

supx,y1,y2∈R

{
r −D − ν1 − b|y2(t)| − 2a|x(t)| + α

β kb|x(t)| ,
+αb|x(t)| βαD + r − ν2 − b|y2(t)| − 2a|x(t)|,
1
βkb|y2(t)| − (D + ν1 + ν2)

}
< 0.

(19)
Lemma 3.2. If (H1) is satisfied, then (18) has no non-
constant periodic solution.

Proof: Denote u = (x, y1, y2)
T and f(x, y1, y2) = (x(r−

ax− by2), kbxy2 − (D+ ν1)y1, Dy1 − ν2y2)
T , then we have

∂f

∂x
=

⎛
⎝ r − by2 − 2ax 0 −bx

kby2 −D − ν1 kbx
0 D −ν2

⎞
⎠ ,

and by [10],

∂f [2]

∂x
=

⎛
⎝ a11 kbx bx

D a22 0
0 kby2 a33

⎞
⎠ .

where a11 = r−D−ν1−by2−2ax, a22 = r−ν2−by2−2ax
and a33 = −D−ν1−ν2. For the following second compound
system ⎛

⎝ ż1
ż2
ż3

⎞
⎠ =

∂f [2]

∂x

⎛
⎝ z1

z2
z3

⎞
⎠ ,

and⎧⎨
⎩

ż1 = [r −D − ν1 − by2(t) − 2ax(t)]z1 + kbx(t)z2 + bx(t)z3,
ż2 = Dz1 + [r − ν2 − by2(t) − 2ax(t)]z2,
ż3 = kby2(t)z2 − (D + ν1 + ν2)z3,

(20)
where u(t) = (x(t), y1(t), y2(t))

T is a solution of (18) when
u(0) = u0 ∈ R3. Set

W (z) = max{α|z1|, β|z2|, |z3|}, (21)

where α and β are both positive constants. Then we can get
d+

dt α|z1(t)| ≤ [r −D − ν1 − b|y2(t)| − 2a|x(t)|]α|z1|
+α

β kb|x(t)|β|z2| + αb|x(t)||z3|,
d+

dt β|z2(t)| ≤ β
αDα|z1| + [r − ν2 − b|y2(t)| − 2a|x(t)|]β|z2|,

d+

dt |z3(t)| ≤ 1
βkb|y2(t)|β|z2| − (D + ν1 + ν2)|z3|,

where d+

dt denotes the right-hand derivative. Therefore,

d+

dt
W (z(t)) ≤ μ(t)W (z(t)), (22)

where μ(t) = max{r − D − ν1 − b|y2(t)| − 2a|x(t)| +
α
β kb|x(t)|,+αb|x(t)| βαD + r − ν2 − b|y2(t)| −
2a|x(t)|, 1

βkb|y2(t)| − (D + ν1 + ν2)}. If (H1) holds,
then there exists δ > 0, such that μ(t) < −δ < 0, thus

W (z(t)) ≤W (z(s))e−δ(t−s), t ≥ s > 0.

So (20) is equi-uniform asymptotic stability and hence the
conclusion of Lemma 3.2 follows.
Lemma 3.3. All the periodic solutions of (2) are uniformly
bounded.

Proof: Denote the solutions of (2) as follows:

x(t) = φ(0) exp
{∫ t

0
[r − ax(s) − by2(s)]ds

}
,

y1(t) = ψ1(0) exp
{∫ t

0
[kbx(s− τ)y2(s− τ)/y1(s) −D − ν1] ds

}
,

y2(t) = ψ2(0) exp
{∫ t

0
[Dy1(s)/y2(s) − ν2] ds

}
,

(23)
as a result, it is impossible for the solutions of (2) to pass
through coordinate surface. If u(t) = (x(t), y1(t), y2(t))

T is
any nontrivial periodic solution of (2), we first define

max{x(t)} = x(t1), min{x(t)} = x(t2),
max{y1(t)} = y1(t3), min{y1(t)} = y1(t4),
max{y2(t)} = y2(t5), min{y2(t)} = y2(t6).

(24)

There are several cases to be considered:
(a) x(t) > 0, y1(t) > 0, y2(t) > 0, from (24) and (2),

r − ax(t1) − by2(t1) = 0, (25)

r − ax(t5) − by2(t5) = 0, (26)

kbx(t3 − τ)y2(t3 − τ) − (D + ν1)y1(t3) = 0. (27)

By (25), ax(t1) = r − by2(t1) < r,

0 < x(t1) <
r

a
. (28)

Similarly, we can also get

0 < y2(t5) <
r

b
. (29)

By (27)–(29), we have y1(t3) = kbx(t3−τ)y2(t3−τ)
D+ν1

<
kb

D+ν1

r
a

r
b , and

0 < y1(t3) <
kr2

a(D + ν1)
. (30)

(b) When x(t) > 0, y1(t) > 0, y2(t) < 0, the following
inequality holds,

kbx(t3 − τ)y2(t3 − τ) − (D + ν1)y1(t3) < 0,

which is contradictory to ẏ1(t3) = 0. So, in this case, (2) has
no nontrivial periodic solutions.

By using the same method, we can prove that when x(t) >
0, y1(t) < 0, y2(t) < 0, or x(t) > 0, y1(t) < 0, y2(t) < 0,
or x(t) < 0, y1(t) > 0, y2(t) > 0, or x(t) < 0, y1(t) >
0, y2(t) < 0, or x(t) < 0, y1(t) < 0, y2(t) < 0, or
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x(t) < 0, y1(t) < 0, y2(t) > 0, (2) has no nontrivial periodic
solutions, either. However, when x(t) ≡ 0, y1(t) �= 0, y2(t) �=
0, by the second equation of (2) , ẏ1(t) �= 0, in this case there
is no nontrivial periodic solutions. When x(t) �= 0, y1(t) ≡
0, y2(t) �= 0 or x(t) �= 0, y1(t) �= 0, y2(t) ≡ 0, the same
results can be established.

From above, if (x(t), y1(t), y2(t)) is the nontrivial periodic
solutions of (2), then 0 < x(t) < r

a , 0 < y2(t) <
r
b , and

0 < y1(t) <
kr2

a(D+ν1)
. Hence the periodic solutions of (2) are

uniformly bounded.
Lemma 3.4. The periods of periodic solutions of (2) are
uniformly bounded.

Proof: Note that if u(t) = (x(t), y1(t), y2(t))
T is a

τ−periodic solution of (2), then u(t) is a periodic solution
of (18) and this contradicts Lemma 3.2. So (2) has no
nontrivial periodic solutions. By the definition of τ (j)

0 , when
j ≥ 1, we have 2π

ω0
≤ τ

(j)
0 .For τ > τ

(j)
0 , there exists an

integer m, such that τ
m < 2π

ω0
< τ . As system (1.2) has

no nontrivial τ−periodic solution, for any integer n, (2) has
no τ

n−periodic solution. This implies that the period p of a
periodic solution on the connected component �(E∗, τ (j)

0 , 2π
ω0

)
satisfies τ

m < p < τ . So we can know that the periods of
the periodic solutions of (2) on �(E∗, τ (j)

0 , 2π
ω0

) are uniformly
bounded.
Theorem 3.5. Assume that (H1) and hypothesis (c) in
Theorem 2.5 are satisfied. Then (2) still has periodic solutions
when τ > τ

(j)
0 (j ≥ 1).

Proof: The characteristic equation of (2) at positive
equilibrium E∗ is

Δ(E∗, τ, p)(λ) = λ3+a2λ
2+a1λ+a0+(b1λ+b0)e

−λτ , (31)

and the characteristic equation of (2) at zero is

λ[λ2 + (D + ν1 + ν2)λ+ ν2(D + ν1)] = 0,

this equation has no pure imagine root. By the definition of
isolated center in [11], we can easily verify that (E∗, τ (j)

0 , p)
is the unique isolated center. There exist ε > 0, δ > 0 and a
smooth curve λ(τ) : (τ

(j)
0 − δ, τ

(j)
0 + δ) → C, such that for

any τ ∈ [τ
(j)
0 − δ, τ

(j)
0 + δ], Δ(λ(τ)) = 0, |λ(τ) − ω0i| < ε,

and λ(τ
(j)
0 ) = iω0, dReλ(τ)

dτ

∣∣∣
τ=τ

(j)
0

�= 0.

Let Ωε, 2π
ω0

= {(η, p) : 0 < η < ε, |p − 2π
ω0

| < ε}. If

|τ − τ
(j)
0 | ≤ δ and (η, p) ∈ ∂Ωε,2π/ω0 are satisfied, then

Δ(E∗, τ, p)(η + 2π
p i) = 0 if and only if η = 0, τ = τ

(j)
0 ,

p = 2π
ω0

.
If we put

H±(E∗, τ (j)
0 ,

2π

ω0
)(η, p) = Δ(E∗, τ (j)

0 ± δ, p)(η + i
2π

p
),

then we have

γ(E∗, τ (j)
0 ,

2π

ω0
) = degB(H−(E∗, τ (j)

0 ,
2π

ω0
),Ωε, 2π

ω0
)

−degB(H+(E∗, τ (j)
0 ,

2π

ω0
),Ωε, 2π

ω0
)

= −1.

According to Theorem 3.3 in [11], connected component
�(E∗, τ (j)

0 , 2π
ω0

) are unbounded. From Lemma 3.3 and Lemma
3.4, the projection of �(E∗, τ (j)

0 , 2π
ω0

) onto τ−space are un-
bounded. As τ = 0, (2) has no nontrivial periodic solution,
this implies that projection of �(E∗, τ (j)

0 , 2π
ω0

) onto τ−space
must be positive and has a lower bound.

IV. NUMERICAL SIMULATION

Finally, we shall give a numerical example:

⎧⎨
⎩

ẋ(t) = x(t) (2 − x(t) − 0.3y2(t)) ,
ẏ1(t) = 0.24x(t− τ)y2(t− τ) − 0.95y1(t),
ẏ2(t) = 0.8y1(t) − 0.1y2(t),

(32)

then (3) and (7) hold and (32) has the unique positive equilib-
rium E∗ = (0.494792, 0.62717, 5.01736). The corresponding
characteristic equation has a pair of purely imaginary roots
λ = ±0.486661i, and τ

(0)
0 = 7.93665, τ (1)

0 = 20.8476,
τ

(2)
0 = 33.7584 · · ·. The following figures explicit the solutions

of (32) with the initial value (1, 1, 1).
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Figure 1. When τ = 7, the positive equilibrium of (32) is asymptotically
stable.
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Figure 2. When τ = 9, the positive equilibrium of (32) is unstable, and
small amplified periodic solutions exist.
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Figure 3. When τ = 34, periodic solutions still exist.
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