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Highly Conductive Polycrystalline Metallic Ring
in a Magnetic Field

Isao Tomita

Abstract—Electrical conduction in a quasi-one-dimensional
polycrystalline metallic ring with a long electron phase coherence
length realized at low temperature is investigated. In this situation, the
wave nature of electrons is important in the ring, where the electrical
current I can be induced by a vector potential that arises from a static
magnetic field applied perpendicularly to the ring’s area. It is shown
that if the average grain size of the polycrystalline ring becomes
large (or comparable to the Fermi wavelength), the electrical current
I increases to ∼ I0, where I0 is a current in a disorder-free ring. The
cause of this increasing effect is examined, and this takes place if the
electron localization length in the polycrystalline potential increases
with increasing grain size, which gives rise to coherent connection
of tails of a localized electron wave function in the ring and thus
provides highly coherent electrical conduction.

Keywords—Electrical Conduction, Electron Phase Coherence,
Polycrystalline Metal, Magnetic Field.

I. INTRODUCTION

IT is well known that an electric current is induced in a
macroscopic metallic ring when a magnetic field B applied

to the ring’s area increases or decreases in time t. This is
derived from Faraday’s law of induction: E = −dφ/dt, where
E is the electromotive force through the wire of the ring and
φ = |B|S is the applied magnetic flux with a ring’s area of
S. In the case of a static magnetic field, such a current is not
induced in the ring because of E = 0. However, if the ring is
downsized to that in a mesoscopic scale, where the quantum
coherence of an electron is preserved, a current can be induced
by a vector potential A that arises from a static magnetic field
B = ∇×A [1]–[3]. Here, to preserve its quantum coherence,
the circumference of the ring should be smaller than the phase
coherence length (or the inelastic scattering length) lφ, which
is the length that an electron does not change the size of its
energy and momentum before scattering with electrons and
phonons. This lφ is about 10μm in metals at a temperature of
∼ 0.1 K. Even at this temperature, some metals (e.g., Au, Cu)
are not superconductors because of very weak electron-phonon
coupling, and these kinds of metals are dealt with in this paper.
The reason why the current is induced by the vector

potential is that it yields the asymmetry of electron momentum
distribution because the electron momentum ±p is changed
as ±p − eA with the vector potential A [4]. Here, the
plus (minus) sign of p denotes clockwise (counterclockwise)
propagation of electrons in the ring and e is the electric charge.
This asymmetric momentum distribution produces a finite
current in one direction of the ring after statistical averaging.
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Fig. 1 The presence of an additional magnetic field ΔB to a static
magnetic field B. A current I in the ring is generated from the original B.

ΔB is produced from I via Ampere’s law.

Recent microfabrication technology has enabled producing
such a mesoscopic ring, and experiments to detect such a
current in the ring [5]–[7] have actually shown its presence by
measuring a change ΔB in the magnetic field B with the help
of superconducting quantum interference devices (SQUIDs),
where ΔB arises from the presence of the current I via
Ampere’s law (See Fig. 1).
Some of the experimental results [5], [6] for the current

were well explained by theory under situations that fit those
in the experiments, but the other [7] remains unexplained. The
current in a quasi-one-dimensional gold (Au) ring fabricated
on an SiO2 substrate was much greater than that predicted by
theory, where the presence of defects and dislocations in the
ring would make the size of the current almost two orders of
magnitude smaller than a current I0 in a disorder-free ring.
But, the observed current was on the same order of I0.
In the next section, we show previous theoretical treatment

of the current I in a disordered metallic ring and point out a
problem with it.

II. THEORY AND ITS PROBLEM
To calculate the current, we use the following Hamiltonian

H for the electrons in a quasi-one-dimensional ring with
a static magnetic field B(r) = ∇ × A(r) applied in the
perpendicular direction to the ring’s area [8].

H =
1

2m

(
h̄

i
∇− eA(r)

)2

+ V (r)

=
1

2m

(
h̄

i
∇− 2πh̄

Lx

φ

φ0

ex

)2

+ V (r), (1)

where r = (x, y, z), the x direction is taken along the wire of
the ring with a length of Lx, the y and z directions are taken
vertically to it with a wire cross-section of Ly×Lz (Ly, Lz �
Lx), ex is the unit vector in the x direction, m is the electron
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mass, h̄ is the Planck’s constant h divided by 2π, φ = |B|S is
a magnetic flux with S being the ring’s area, and φ0 = h/e.
V (r) is a disordered potential for defects and dislocations,
which is defined by

V (r) =

N∑
i=1

vi δ(r −Ri), (2)

where Ri (i = 1, 2, ..., N) and vi are the i-th position and
strength of the disorder, respectively, and the statistics of the
disordered potential is of the form

〈
V (r)

〉
= 0, (3)〈

V (r)V (r′)
〉

= γ δ(r − r′), (4)

where γ is a constant and
〈· · ·〉 denotes disorder averaging.

In the above, the electrons are dealt with as quasi-particles
that behave as free particles, where the electron-electron (e-e)
interaction is renormalized as the electron mass [9].
The current I in the ring is then calculated as

I =
1

β

∑
ωn

eiωnη
∑
k

I(kx)G(k, ωn) (η → 0+), (5)

where β is the inverse temperature β = 1/T in units of kB =
1, ωn is the Matsubara frequency ωn = (2n + 1)π/β [10]
in units of h̄ = 1, I(kx) = eh̄kx/mLx gives the current
vertex, and G(k, ωn) is the thermal Green function [11] for a
particular disorder configuration with a frequency of ωn and
a wave vector of k = (kx, ky, kz) = ((2π/Lx) (nx − φ/φ0),
(2π/Ly)ny, (2π/Lz)nz) (nx, ny, nz = 0,±1,±2, ...).
In what follows, we calculate a typical current

Ityp ≡ 〈
I2
〉 1

2=
(〈

I
〉2
+(ΔI)2

) 1
2

(6)

that includes the fluctuation term ΔI of the current arising
from the electron scattering with disorder [12]–[14]. To do
this, squaring (5) and taking its disorder averaging, we obtain

〈
I2
〉

=
1

β2

∑
ωn,ζl

eiωnηeiζlη
′
∑
k,k′

I(kx)I(k
′

x)

×〈G(k, ωn)G(k′, ζl)
〉

(η, η′ → 0+). (7)

Using the perturbative expansion of G(k, ωn) for a weak
disordered potential and taking the diagrams of the leading
order, as shown in Fig. 2, we can rewrite (7) as
〈
I2
〉

=
1

β2

∑
ωn,ζl

eiωnηeiζlη
′
∑
k,p

∑
q

×
(
I(−kx + qx+)I(kx)G

2(−k + q+, ωn)

× G2(k, ζl)K(q+, ωn − ζl) + I(kx + qx−)I(kx)

× G2(k + q−, ωn)G
2(k, ζl)D(q−, ωn − ζl)

+ I(−kx + qx+)I(px)G
2(−k + q+, ωn)G(k, ζl)

× G(−p+ q+, ωn)G
2(p, ζl)K

2(q+, ωn − ζl)

+ I(kx + qx−)I(px)G
2(k + q−, ωn)G(k, ζl)

× G(p+ q−, ωn)G
2(p, ζl)D

2(q−, ωn − ζl)

)
, (8)

where G =
〈G〉 is the disorder-averaged thermal Green

function, and K and D are the two-body Green functions,
called Cooperon and Diffuson respectively, which are yielded
from the cross terms of the expanded Green functions. Note
that

∑
q in (8) denotes

∑
q+

for a function of q+ and
∑

q−

for a function of q−.

Fig. 2 (a) One-Cooperon and one-Diffuson processes and
(b) two-Cooperon and two-Diffuson processes. They contribute to the
current as the leading order. The crosses represent the current vertices.

The explicit expressions of G, K, and D are as follows:

G(k, ω) =
1

iω − ξ(k) + i
2τe

sgnω
, (9)

K(q+, ω − ζ) =
1

2πN(0)τ2e

θ(−ωζ)

|ω − ζ|+D0|q+|2 , (10)

D(q−, ω − ζ) =
1

2πN(0)τ2e

θ(−ωζ)

|ω − ζ|+D0|q−|2 , (11)

where ξ(k) = Ek − μ with Ek being the electron energy and
μ being the chemical potential, N(0) is the density of states,
τe is the electron elastic scattering time, D0 is the diffusion
constant, and θ(x) = 0 (x ≤ 0), 1 (x > 0).
Making further calculations by substituting (9), (10), and

(11) for (8), we obtain
〈
I2(T )

〉
=

∞∑
n=1

g

(
n2T

Ec

)〈
I2n(T = 0)

〉

× sin2
(
2πn

φ

φ0

)
, (12)

where Ec = (π/2)(hD0/L
2
x), g(x) gives a temperature

dependence and is defined by

g(x) =
π6

3
x2

∞∑
n=1

n exp
(
−
√
2π3nx

)
(13)

and
〈
I2n(T = 0)

〉
takes the form

〈
I2n(T = 0)

〉
=

8

3π2n3

(
le
Lx

)2

I20 , (14)
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where le is the electron elastic scattering length that is defined
by le = vF τe with the Fermi velocity vF.
From (14), we can see that the first term with n = 1 is

the largest component in
〈
I2n
〉
because the other terms drop

off as n−3. In addition, we can see from (12) that the largest
component

〈
I21
〉1/2 has a flux dependence of φ0. This agrees

well with the experimental result (See Fig. 2 (d) in [7]).
The temperature dependence g1/2(T/Ec) obtained from

(13) for the first-harmonic (n = 1) current is also in good
agreement with that measured in the experiment, as depicted
in Fig. 3 (See also Fig. 3 (a) in [7]).
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Fig. 3 Comparison between theoretical and experimental temperature
dependences. The blue curve is g1/2(T/Ec) calculated from (13) for a 2.4
μm ring, and the red squares are the experimental data measured for the

same-sized ring [7], excluding data for a 1.4 μm × 2.6 μm loop.

Although the theoretical flux and temperature dependences
agree well with the experimental data, the size of the current
for the first harmonic

〈
I21
〉 1

2= 2

√
8

3π2

le
Lx

I0 ≈ 1.04
le
Lx

I0, (15)

does not match the measured value ∼ I0 because le/Lx has
a size of ∼ 1/100. In (15), a factor 2 in front of the square
root comes from spin multiplicity of electrons.
To solve the problem with the discrepancy between

the theoretical and experimental values, some new ideas
containing the effect of the e-e interaction [15]–[17] have been
proposed. But, the discrepancy has not yet been resolved. As
a matter of fact, the effect of the e-e interaction works to
reduce the size of the current, and the reduction size becomes
large as the strength of the e-e interaction increases. For this
reason, other possibilities than this should be searched in order
to explain the cause of the large current.

III. SOLUTION OF PROBLEM AND DISCUSSION

In this section, we reconsider whether the model disordered
potential was appropriate or not as one of the possibilities.
In the experiment [7], the Au ring was fabricated from an

Au film formed on an amorphous SiO2 substrate by deposition
of Au vapor on the substrate. In this case, the experiment
[7] did not point it out, but it is known that polycrystalline
Au is formed on it [18]. In most theories, the correlation
function of the disordered potential is assumed to be of the
form

〈
V (r)V (r′)

〉
= γ δ(r − r′) for analytical calculations

(or
〈
VnVn′

〉
= γ δn,n′ for numerical calculations) because it

makes the calculations easier, where the effective range of the
disorder is very short compared with the Fermi wavelength.
However, this assumption has no basis.
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Fig. 4 Correlation function of a polycrystalline potential. The inset shows
the polycrystalline potential with an average potential height Δ and an
average grain size Λ (a is the atomic distance). The red squares are

computer-generated points for the disorder-averaged correlation function.

The correlation function of the disordered potential in the
Au ring on the amorphous SiO2 substrate would be different
from the above short-ranged type, and a correlation length (or
grain size) that is large compared with the Fermi wavelength
would be possible. This would considerably affect the size of
the current.
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Fig. 5 Dependence of the current Ityp on the average grain size Λ, where
Ityp and Λ are normalized by a current I0 in a disorder-free ring and the
Fermi wavelength λF, respectively, t is the electron hopping matrix element
that corresponds to the electron kinetic energy, and the average potential

height Δ is taken as 0.17t, 0.29t, 0.40t, 0.52t.

Motivated by that possibility, some theoretical studies
[19]–[21] have been made to disclose the effect of a finite grain
size in polycrystalline Au on the current; more specifically, if
we use a correlation function with an average grain size Λ
and an average potential height Δ, as shown in Fig. 4 [20],
the current can be increased to ∼ I0 as the average grain size
Λ becomes large (or comparable to the Fermi wavelength λF),
as depicted in Fig. 5. Here, the increasing rate (e.g., the ratio
of Ityp between Λ = 1.3λF and 0.2λF) becomes higher for
larger potential heights.
The above results were surmised to be due to the relaxation

of electron localization, but this has not yet been proved. To
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do this, we examine it via a theory developed by Anderson
et al. [22] used for the analysis of the conductance in a
one-dimensional disordered wire with quantum coherence.
This theory relates the conductance g of the disordered wire
with a length of L to the electron localization length ξ as

g = κ e−
L
ξ , (16)

where κ is a constant. If the wire is ring-shaped, L is the
perimeter of the ring (i.e., L = Lx). Since the current I is
proportional to the conductance g, (16) can be rewritten as

I = C e−
L
ξ , (17)

where C is a constant. This is interpreted as follows: If an
electron is localized at the center of the disordered wire with
L(> ξ), the tail of the wave function near both ends of the wire
is ψ ∼ e−L/2ξ . Thus the quantum link between both ends is
very weak. In this case, the probability that an electron at one
end comes to the other end is in proportion to |ψ|2 ∼ e−L/ξ,
which gives the transmission probability to which the current
is proportional. On the other hand, the relation between the
average grain size Λ and the localization length ξ is given as

ξ = bΛ, (18)

where b is a constant. This is because the increasing rate of
ξ is the same as that of Λ, which is obtained from the scale
transformation for the polycrystalline potential, as shown in
Fig. 6.

Λ
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Localized wave function

Λ’/Λ =ξ ’/ξ

Fig. 6 Relation between the average grain size Λ and the localization
length ξ when the scale transformation of the polycrystalline potential is

performed, which gives proportionality between Λ and ξ.

Substituting (18) for (17), we obtain

I = C e−αL
Λ , (19)

where α = 1/b. In Fig. 7, we plot the normalized current
I/C as a function of the average grain size Λ normalized by
the Fermi wavelength λF, where the parameter α is set as
α = ηλF/L (η = 0.12, 0.27, 0.53, 0.87).
Comparing the curves in Figs. 5 and 7, we can see that they

show a very similar behavior, and we can conclude that the
enhanced current with the increased grain size is caused by
the extended localization length. There are some deviations in
the curves between Figs. 5 and 7, but these will be improved if
the analysis in Fig. 7 takes account of the omitted fluctuation
term ΔI , as seen in (6).
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Fig. 7 Dependence of the current I = C e−αL/Λ on the grain size Λ,
where α is set as α = ηλF/L (η = 0.12, 0.27, 0.53, 0.87), and I and Λ

are normalized by the constant C and the Fermi wavelength λF,
respectively.

IV. SUMMARY

We have investigated the electrical conduction in a
quasi-one-dimensional polycrystalline metallic ring formed
on an amorphous SiO2 substrate in the region where the
wave nature of electrons is important. If we calculate the
current with a short-ranged disordered potential, we have
had a disagreement in size with the current measured in
the experiment (∼ I0). Thus, recalculating the current by
taking into consideration the actual metallic state (or the
polycrystalline state), we have obtained an increased current
on the order of I0. To disclose this increasing mechanism,
we have performed an analysis using an electrical conduction
theory developed by Anderson et al. [22] while taking account
of an increased electron localization length due to an enlarged
grain size, which is obtained from the scale transformation.
From this analysis, we have observed a very similar behavior
for the recalculated current and thus have concluded that high
electrical conduction in the polycrystalline ring is caused by
the increased localization length due to the enlarged grain size.
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