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 
Abstract—In this study, a spatial wavelet-based crack 

localization technique for a thick beam is presented. Wavelet scale in 
spatial wavelet transformation is optimized to enhance crack 
detection sensitivity. A windowing function is also employed to erase 
the edge effect of the wavelet transformation, which enables the 
method to detect and localize cracks near the beam/measurement 
boundaries. Theoretical model and vibration analysis considering the 
crack effect are first proposed and performed in MATLAB based on 
the Timoshenko beam model. Gabor wavelet family is applied to the 
beam vibration mode shapes derived from the theoretical beam model 
to magnify the crack effect so as to locate the crack. Relative wavelet 
coefficient is obtained for sensitivity analysis by comparing the 
coefficient values at different positions of the beam with the lowest 
value in the intact area of the beam. Afterward, the optimal wavelet 
scale corresponding to the highest relative wavelet coefficient at the 
crack position is obtained for each vibration mode, through numerical 
simulations. The same procedure is performed for cracks with 
different sizes and positions in order to find the optimal scale range 
for the Gabor wavelet family. Finally, Hanning window is applied to 
different vibration mode shapes in order to overcome the edge effect 
problem of wavelet transformation and its effect on the localization 
of crack close to the measurement boundaries. Comparison of the 
wavelet coefficients distribution of windowed and initial mode 
shapes demonstrates that window function eases the identification of 
the cracks close to the boundaries. 
 

Keywords—Edge effect, scale optimization, small crack locating, 
spatial wavelet. 

I. INTRODUCTION 

OWADAYS crack detection and localization has been a 
common topic among researchers to enhance the 

stability, durability, and safety of engineering structures. 
Vibration-based damage identification methods are widely 
used in the mechanical and civil engineering researches. A 
damage changes the physical properties of the structure such 
as stiffness, mass, and damping ratio. The vibration-based 
damage identification is based on the fact that these alterations 
can affect modal properties of the structure such as mode 
shapes and natural frequencies. Investigation of the change in 
the natural frequency was the earliest vibration-based method 
to identify the damage [1]. 

Using mode shapes as a feature to detect the damage has 
some advantages over the natural frequency-based method. 
Mode shapes can reveal local information which makes them 
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more sensitive to local defects [2]. Moreover, mode shapes are 
less affected by environmental factors, such as temperature 
variations, as compared to the natural frequency methods. 
Over last decades, wavelet transformation has been a popular 
tool among researchers to analyze the vibrational signals to 
ease the damage detection. Ashino and Yamamoto developed 
the theory of wavelets and their applications [3]. Surace and 
Ruotolo used the wavelet transform to analyze vibration 
response signals of a cracked beam [4]. Wang and Deng 
proposed a damage detection technique using spatial wavelet 
analysis [5]. A fluctuation on the deflection profile at the crack 
position would be induced by crack in structures. Even a small 
and invisible perturbation would be discerned through wavelet 
coefficients values. This would practically mean that the 
detection of the crack location becomes possible. Under both 
static and dynamic loading conditions, the numerically 
simulated deflection or displacement responses were analyzed 
with wavelet transform, and the presence of the crack was 
detected by a sudden change in the spatial variation of the 
transformed response. For most of the analysis, they employed 
the simple Haar wavelets. An application of spatial wavelet 
theory to crack identification in structures was proposed by 
Liew and Wang [6]. They calculated the wavelet coefficients 
along the length of the beam based on the numerical solution 
for the deflection of the beam. In order to find the position of 
crack from the wavelet data, an excitation that oscillates 
rapidly along the length of the beam was used to excite the 
beam. The crack location was then indicated by a peak in the 
variations of some of the wavelets along the length of the 
beam. Wu and Wang had experimental studies on damage 
detection of a beam structures with wavelet transform [7]. 
They used a high-resolution laser profile sensor to measure the 
deflection profile of a cracked aluminum cantilever beam 
subjected to a static displacement at its free end. De-noise 
techniques have been introduced to make the detection more 
efficient. The smoothed static profile of the cracked beam has 
been analyzed with Gabor wavelet to identify the crack. Rucka 
worked on wavelet-based damage detection technique on a 
cantilever beam with a single notch [8]. He presented 
experimental and numerical analysis of damage detection 
based on higher order modes. After reviewing previous studies 
in this area, it can be concluded that to have higher crack 
detection sensitivity, an optimization study for scale factor of 
wavelet transformation is needed. Furthermore, identification 
process for cracks, which are close to the boundary, is still a 
problem for researchers because of edge effect in wavelet 
analysis. 
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In this study, an optimization process is performed on 
wavelet scale factor to reach higher crack detection sensitivity. 
Afterward, Hanning window is employed to erase the edge 
effect in order to ease the detection of cracks close to the 
boundaries. 

II. THEORETICAL MODEL 

A. Beam Equations 

In this section, a cantilever beam with a through thickness 
crack in the middle is modeled. The schematic view of this 
cracked beam is shown in Fig. 1. The dimensions of the beam 
are mentioned in the TABLE II. The crack is represented by a 
torsion spring with torsion coefficient Kt (Fig. 1 (b)). Since a 
thick beam is considered in this study, the governing equations 
are based-on Timoshenko theory. The governing equations are 
as follows [9]: 
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where ∅ is the slope of the deflection curve, ߱ is the lateral 
displacement, ߩ  is the density of the beam material, A is the 
cross-section area, E is the elastic modulus, G is the shear 
modulus, I is the second moment of area, ݇  is called the 
Timoshenko shear coefficient that depends on the beam 
geometry (mostly ݇=5/6 for a rectangular section). TABLE I 
shows the material properties of the beam under study. 
 

TABLE I 
MATERIAL PROPERTIES 

Symbol Description Quantity 

 Density of the beam material 7870 kg/m3 ߩ

E Elastic modulus 210 GPa 

G Shear modulus 79 GPa 

 
To solve (1) and (2), variables are separated. ߱ሺݔ,  ሻ andݐ

∅ሺݔ,  :ሻ are assumed to beݐ
 

߱ሺݔ, ሻݐ ൌ ܹሺݔሻ. ݁௜ఠ೙.௧           (3) 
 

∅ሺݔ, ሻݐ ൌ ܲሺݔሻ. ݁௜ఠ೙.௧           (4) 
 
where ߱௡ is the natural frequency of the structure. 

In this model, there are two boundary conditions at the 
fixed-end, and two at the free-end. In addition, the torsion 
spring makes four more boundary conditions at the crack 
position. According to the spring assumption, the cantilever 
beam has two separate parts which are connected by a spring. 
All boundary conditions are as: 
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The slope fluctuation at crack position is given by (9) [10]: 
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where Kt is the stiffness of rotational spring, which is 
calculated as follows [11]: 
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where: 
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By applying eight boundary conditions, characteristic 

matrix is obtained. Afterward, the first three mode shapes of 
the beam are derived from a numerical simulation conducted 
in MATLAB [12]. Each of the mode shapes consists of 1001 
data points along the beam length. 
 

 

Fig. 1 (a) Schematic of a cantilever beam with a through thickness 
crack. (b) Torsion spring representing the crack 

 
TABLE II 

BEAM DIMENSIONS 

Symbol Description Quantity 

L Length 1 m 

h Height 0.1 m 

b Width 0.05 m 

d Crack depth 0.0125 m 

B. Wavelet Analysis 

Wavelet is a transformation that decomposes a function f(t) 
into a superposition of the elementary function ψa,b(t) derived 
from an analyzing wavelet ψ(t) known as the mother wavelet. 
Wavelets are generated from the mother wavelet through 
scaling and translation, as defined below: 
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where a and b are real-valued parameters, a is the scale 
parameter, and b is the translation parameter. The wavelet 
coefficient for time scale wavelet transform is defined as: 
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where ߰௔,௕ሺݐሻ	is the conjugate function of ߰௔,௕ሺݐሻ. 
In this project, the Gabor wavelet family is used to analyze 

the spatial information. This wavelet is generated from Gabor 
function, as defined below [13]: 
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Wavelets are mostly used to analyze the time-domain 

signals but with changing the t to a spatial coordinate in (14), 
spatial distributed signal can be analyzed by wavelet 
transform, as well. 
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where x is the spatial coordinate, ܹሺݔሻ is the mode shape of 
the cracked beam, a is the scale parameter and b is the 
translation parameter (indicating the position). 

III. RESULTS AND DISCUSSIONS 

Three mode shapes which are derived in the previous 
section are not able to show any sign of crack in the beam. In 
structural health monitoring, wavelet transform is used to 
magnify the singularity at the crack position of the mode 
shape due to the crack effect. Gabor wavelet is applied to the 
first three mode shapes. The results show that, for a crack in 
the middle of the beam, all three modes reveal a large 
perturbation caused by the crack. Fig. 2 shows the relative 
wavelet coefficient values of the first three mode shapes for 
various scale factors. This figure is based-on a particular crack 
in the middle of the beam with the depth equal to 12.5 percent 
of the beam height. Relative wavelet coefficient compares 
coefficient values along the beam length with the minimum 
value at the intact locations of the beam for the sensitivity 
analysis (wavelet coefficient is used as a short expression in 
the rest of the paper). As it can be seen, very large wavelet 
coefficient values are obtained at all locations of the beam 
regardless of the crack position for scales greater than 9. 
Hence, it can be concluded, the scales greater than 9 are not 
suitable for this study. Furthermore, for scale values less than 
4, edge effects clearly appear around the boundaries. 
According to Fig. 2, scales 6.5, 5.6, and 5.1 are the optimal 
scales for first, second, and third modes, respectively. For 
detection of a crack in the middle, two factors play important 
roles: first, the wavelet coefficient value at the damaged area, 
and second, the maximum number of wavelet coefficients, 
which are approximately zero at the intact area and 
domination of non-zero values at the crack area. 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 2 Relative wavelet coefficient of the first three mode shapes with 
different scale factors at different positions of a beam with a crack at 
the middle (Crack depth = 0.125*Beam height). (a) first mode shape. 

(b) Second mode shape. (c) Third mode shape 
 

Fig. 2 shows that wavelet coefficient values for the first and 
second modes are greater than the third mode. Wavelet 
coefficients are 4*104, 1.5*104, 3.5*103 for first, second, and 
third mode, respectively (at the crack position with optimal 
scales). Also, the second mode has the maximum number of 
values, which are close to zero at the intact area when the 
optimal scale is used. Therefore, it can be concluded that the 
second mode is the most sensitive mode for identification of a 
crack located in the middle of the beam. 

The previous discussion has clarified that the optimal scale 
varies for different mode shapes. Moreover, nature of the 
crack may also affect the results of this study. The depth and 
the position are two important crack properties. Optimal scales 
for depths from 3 to 20 percent of the beam height are shown 
in Fig. 3. This figure is comprised of three 3D plots and 
illustrates the effect of crack depth on the chosen optimal scale 
for the first three mode shapes while the crack is in the middle 
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of the beam. For the first mode, 6 to 8 can be an optimal range 
of the scale factor for depths larger than 9 percent of beam 
height, although the results do not include any certain rule to 
choose an optimal scale for various crack depths. On the other 
hand, the derived plot based on the second mode demonstrates 
a certain range of the optimal scale for various crack depths, 
which is between 5 to 6. For the third mode, same range as the 
second mode is obtained for the optimal scale. However, the 
wavelet coefficient values for the third mode are very small in 
comparison to the first and second modes. Thus, the third is 
less sensitive to crack than the other two modes in this study. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3 Relative wavelet coefficient of the first three mode shapes vs. 
crack depth and scale with the crack at the middle of the beam. (a) 

First mode shape (b) Second mode shape (c) Third mode shape 
 
Fig. 3 shows a clear image of the crack depth effect on the 

chosen optimal scale. However, to have a complete 
understanding of influences of crack nature on the chosen 

optimal scale, another analysis is needed. 
 

 

(a) 
 

 
(b) 

 

 
(c) 

Fig. 4 Relative wavelet coefficients of first three mode shapes of a 
beam with a crack at nine different positions for various scale factors. 

(a) First mode shape (b) Second mode shape (c) Third mode shape 
 
In this step, crack position varies from 0.1 to 0.9 m, and the 

wavelet coefficient value at the crack position for each scale 
factor is obtained. Fig. 4 illustrates the results of this analysis 
for the first three mode shapes. In this part of study, the crack 
depth is 12.5 percent of beam height. It can be seen that the 
first mode is more sensitive to detect and localize cracks, 
which are closer to the fixed-end than the free-end of the 
beam. Moreover, damage detection by scale factors smaller 
than 6 cannot be performed properly. However, by looking at 
plots which are obtained from the second and third modes, a 
specific optimal scale range of 5 and 6 can be found for 
different crack positions. Furthermore, the second mode is 
more sensitive to cracks close to the middle of the beam. On 
the other hand, the third mode is not sensitive to cracks close 
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to the both ends and middle of the beam. It can be seen in Fig. 
4 that the higher vibration modes carry more information on 
the damage in the structure than the lower vibration modes. 

 

 

Fig. 5 Hanning window function 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6 Relative wavelet coefficient of the first three windowed mode 
shapes with different scale factors at different positions of a beam 

with a crack close to the fixed end (Crack depth = 0.125*Beam 
height). (a) First mode shape (b) Second mode shape (c) Third mode 

shape 
 
As it has been mentioned before, edge effect is considered 

as a significant problem, because those large values could 
make it impossible to detect cracks, which are small or close 
to the boundaries. Fig. 2 illustrates that all three modes are not 
sensitive to cracks close to the fixed and free end because of 
the large coefficient values around the boundaries. At the 
mentioned locations, coefficient values are significantly large 
as it is illustrated in Fig. 2. 

The window function can be an appropriate solution to 
erase the edge effect around the beam boundaries. As the last 
step of this study, a Hanning window function (Fig. 5) is 
applied to the first three mode shapes of the cantilever beam. 
A crack is defined close to the fixed end of the beam (0.1 m). 
The crack depth is 12.5 percent of the beam height. Afterward, 
the Gabor wavelet transform is applied to the windowed mode 
shapes and results are presented in Fig. 6. Same as the 
previous obtained results, large relative wavelet coefficient 
values at crack position prove that the first mode has the most 
sensitivity to detect and localize a crack close to the fixed end 
of the beam. This figure indicates an obvious perturbation at 
the crack position. However, except an intense peak at the 
damaged spot, a smooth perturbation appears in the middle of 
the beam. This smooth perturbation is due to the nature of the 
Hanning window function and can be seen in all three modes. 
As another finding from this figure, the edge effect is erased in 
areas close to the boundaries. Moreover, the optimal wavelet 
scale for all three modes is found to be around 8. Eventually, it 
can be concluded that by using proper window function, 
wavelet-based damage detection method is applicable even for 
cracks close to the both ends. 

IV. CONCLUSION 

In this work, an optimization process is performed on 
wavelet scale factor to reach higher crack locating sensitivity 
with spatial wavelet transformation. Optimal scale ranges with 
highest crack locating sensitivity are 6-8, and 5-6 for the first 
and second vibration modes, respectively. Furthermore, 
Hanning window is employed to erase the edge effect of the 
wavelet transformation in order to realize the detection of 
cracks close to the measurement boundaries. According to 
simulation results, it can be concluded that, by using the 
window function, spatial wavelet-based damage detection 
method is applicable even for cracks close to the both ends of 
the beam. As future works, experimental tests will be 
conducted to verify the results of numerical study. Moreover, 
the optimization procedure will be studied for different 
wavelet families. 
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