
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1494

High Securing Cover-File of Hidden Data Using
Statistical Technique and AES Encryption Algorithm

A. A. Zaidan, Anas Majeed, and B. B. Zaidan

Abstract—Nowadays, the rapid development of multimedia

and internet allows for wide distribution of digital media data.
It becomes much easier to edit, modify and duplicate digital
information Besides that, digital documents are also easy to
copy and distribute, therefore it will be faced by many
threatens. It’s a big security and privacy issue with the large
flood of information and the development of the digital
format, it become necessary to find appropriate protection
because of the significance, accuracy and sensitivity of the
information. Nowadays protection system classified with more
specific as hiding information, encryption information, and
combination between hiding and encryption to increase information
security, the strength of the information hiding science is due to the
non-existence of standard algorithms to be used in hiding secret
messages. Also there is randomness in hiding methods such as
combining several media (covers) with different methods to pass a
secret message. In addition, there are no formal methods to be
followed to discover the hidden data. For this reason, the task of this
research becomes difficult. In this paper, a new system of information
hiding is presented. The proposed system aim to hidden information
(data file) in any execution file (EXE) and to detect the hidden file
and we will see implementation of steganography system which
embeds information in an execution file. (EXE) files have been
investigated. The system tries to find a solution to the size of the
cover file and making it undetectable by anti-virus software. The
system includes two main functions; first is the hiding of the
information in a Portable Executable File (EXE), through the
execution of four process (specify the cover file, specify the
information file, encryption of the information, and hiding the
information) and the second function is the extraction of the hiding
information through three process (specify the steno file, extract the
information, and decryption of the information). The system has
achieved the main goals, such as make the relation of the size of the
cover file and the size of information independent and the result file
does not make any conflict with anti-virus software.

Keywords—Cryptography, Steganography, Portable Executable
File.

I. INTRODUCTION
ITH the emergence and development of computer
science and informatics emerged the urgent need to find

ways to avoid Muggers and computer hackers from stealing or

Aos Alaa Zaidan is with Department of Computer Science & Information

Technology, University Malaya, Kuala Lumpur, 50603 Malaysia (phone:
+60172452457; e-mail: awsalaa@perdana.um.edu.my).

Anas Majeed Hamid is with Faculty Computer System & Information
Technology, University of Malaya, Kuala Lumpur, Malaysia (e-mail:
hart2hartes@perdana.um.edu.my).

Bilal Bahaa Zaidan is with Department of Computer Science &
Information Technology, University Malaya, Kuala Lumpur, Malaysia (e-
mail: bilal@perdana.um.edu.my).

disclosure of data and sensitive task information. It was
learned that arose organization (Cryptography) optimal way to
achieve this end, this science has evolved steadily emerged the
systems and very efficient techniques. But with the advent of
information and communications networks global information
network (Internet) has become the issue of complexity of the
privacy and unattainable due to achieve this process and to
ensure access to the data required was necessary to be
accessible to everyone online common, and here is the
problem of inefficient organization, vision statements as loose
enough to push the spam or the attacker to believe that
important or sensitive data lies in these random or encrypt
text, some techniques comes using anti-encrypted to attempt to
dismember the symbols and creating content, even if unable to
do so, it might tampering or distorts or used some means
available to prevent access to its goal.Elsewhere Governments
began losing control of the encrypted messages exchanged
between the institutions, companies and the possibility of
these texts contain encrypted information may be against the
security and the public interest, and therefore resorted to some
governments to prevent the use of the organization for users of
communications networks for personal purposes [1],[2].From
here emerged the urgent need to find new techniques
alternative organization to overcome these weaknesses, giving
rise to conceal information technology (Information Hiding),
which are based on a different principle to the idea of
organization, where they are buried information (Information
Embedding) within other media carrier, and making them
aware (Imperceptible) by hackers and attackers, and so are the
public domain of information to users of the network, while
the content monopoly "on the relevant agencies, which alone
knows how to extract content[3],[4]. One of the latest
techniques that have been used in this area by researchers at
the Mount Sinai School MOUNT SINAI Medical in New
York New York in 2007, as they managed to hide the secret
texts in sentences Strand human DNA (Human DNA) by using
a technique called genetic system coverage (Genomic
Steganography), and by placing signs resolution to be agreed
upon in the nuclei chromosomes and then integrate these with
millions sentences and sent to the other end. To extract the
secret message is soaking get special distinction sentences
used on the other and then placed under the microscope to
extract the required text [5]. The oldest Authentications on
Steganography taken from the legendary stories Greeks
Herodotus and then back to the fifth century BC, these sources
indicate that they felt they fly head of the Messenger and then
write the letter secret in the head, leaving hair to grow then be
sent to the required which is a re-extraction letter
[5],[6].Authentications and other writing secret messages on
the wood panels and then covered wax and will be hid those

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1495

writing panels appear free of anything. And they were killing
their animals as rabbit example corner confidential letter
inside it [7].Other means that the common use since the first
century AD, invisible inks Invisible Inks, which was able to
write a confidential letter with any other non-value-
confidential and usually write between lines, for example
those rabbis some fruit juices Fruit Juices, milk, urine,
vinegar, and all these species become dark and visible when
exposed to heat the written document [7]. Then these kinds of
inks evolved with the evolution of science chemical was used
vehicles carrying chemical characteristics of the same old
species with a more accurate and efficient have been used
during the First and Second World Wars in the military
secrecy of correspondence. Other technical been used during
World War II is sending a message hidden within another
message is not relevant, and based on the idea of a nomination
letters every word of the letter counterfeit representation of
characters from the characters letter requested
confidentiality.Moreover, there are numerous ideas for the
same method is used to be more than characters, or take
certain words or phrases within the text fake and leaving the
rest. Finally, it should be noted that the senior researcher in the
area of concealment and science-based organization itself is
German Johannes Trithemius ((between (1462-1526), and the
oldest books in the area of coverage Posted by Gaspari
Schotti)) in1665 in the name of (Steganographyica) and (400)
contains a page where all the ideas included (Trithemius)
[7][8].

II. PORTABLE EXECUTABLE FILE (PE-FILE)
The proposed system uses a portable executable file as a cover to

embed an executable program as an example for the proposed
system.

This section is divided into four parts:

⋅ Executable file types.

⋅ Concept related with PE-file.

⋅ Techniques related with PE-file.

⋅ PE-file Layout.

A. Executable File Types
The number of different executable file types is as many

and varied as the number of different image and sound file
formats. Every operating system seems to have several
executable file types unique to it. These types are [3]:

• EXE (DOS"MZ")
DOS-MZ was introduced with MS-DOS (not DOS v1 though)
as a companion to the simplified DOS COM file format. DOS-
MZ was designed to be run in real mode and having a
relocation table of SEGMENT: OFFSET pairing. A very
simple format that can be run at any offset, it does not
distinguish between TEXT, DATA and BSS.
The maximum file size of (code + data + bss) is one-mega
bytes in size.
Operating systems that use are: DOS, Win*, Linux DOS.

• EXE (win 3.xx "NE"):
The WIN-NE executable formatted designed for windows 3.x
is the "NE" new-executable. Again, a 16-bit format, it
alleviates the maximum size restrictions that the DOZ-MZ
has[4].
Operating system that uses it is: windows 3.xx

• EXE (OS/2 "LE"):
The "LE" linear executable format was designed for IBM's
OS/2 operating system by Microsoft. Supporting both 16 and
32-bit segments Operating systems that are used in: OS/2,
DOS [5].

• EXE (win 9x/NT "PE"):
With windows 95/NT a new executable file type is required,
thus was born the "PE" portable executable. Unlike its
predecessors, the WIN-PE is a true 32-bit file format,
supporting relocatable code. It does distinguish between
TEXT, DATA, and BSS. It is in fact, a bastardized version of
the common object file format (COFF) format.
Operating systems that use it are: windows
95/98/NT/2000/ME/CE/XP [5].

• ELF:
The ELF, Executable Linkable Format was designed by SUN
for use in their UNIX clone. A very versatile file format, it
was later picked up by many other operating systems for use
as both executable files and as shared library files [7].
It does distinguish between TEXT, DATA and BSS.
TEXT: the actual executable code area.
DATA: "initialized" data, (Global Variables).
BSS : "un- initialized" data, (Local Variables).

B. Concepts Related with PE
The addition of the Microsoft® windows NT™ operating

system to the family of windows™ operating systems brought
many changes to the development environment and more than
a few changes to applications themselves. One of the more
significant changes is the introduction of the Portable
Executable (PE) file format. The name "Portable Executable"
refers to the fact that the format is not architecture specific [9].
In other words, the term "Portable Executable" was chosen
because the intent was to have a common file format for all
versions of Windows, on all supported CPUs [11].

 The PE files formats drawn primarily from the Common
Object File Format (COFF) specification that is common to
UNIX® operating systems. Yet, to remain compatible with
previous versions of the MS-DOS® and windows operating
systems, the PE file format also retains the old familiar MZ
header from MS-DOS [11].

The PE file format for Windows NT introduced a
completely new structure to developers familiar with the
windows and MS-DOS environments. Yet developers familiar
with the UNIX environment will find that the PE file format is
similar to, if not based on, the COFF specification [10].

The entire format consists of an MS-DOS MZ header,
followed by a real-mode stub program, the PE file signature,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1496

the PE file header, the PE optional header, all of the section
headers, and finally, all of the section bodies [12].

C. Techniques Related with PE
Before looking inside the PE file, we should know special

techniques some of which are [6]:

• General view of PE files sections
A PE file section represents code or data of some sort. While
code is just code, there are multiple types of data. Besides
read/write program data (such as global variables), other
types of data in sections include application program interface
(API) import and export tables, resources, and relocations.
Each section has its own set of in-memory attributes,
including whether the section contains code, whether it's read-
only or read/write, and whether the data in the section is
shared between all processes using the executable file[8].

Sections have two alignment values, one within the desk
file and the other in memory. The PE file header specifies both
of these values, which can differ. Each section starts at an
offset that's some multiple of the alignment value. For
instance, in the PE file, a typical alignment would be 0x200.
Thus, every section begins at a file offset that's a multiple of
0x200.Once mapped into memory, sections always start on at
least a page boundary. That is, when a PE section is mapped
into memory, the first byte of each section corresponds to a
memory page. On x86 CPUs, pages are 4KB aligned, while
on the Intel Architecture IA-64, they're 8KB aligned.

• Relative Virtual Addresses (RVA)
In an executable file, there are many places where an in-
memory address needs to be specified. For instance, the
address of a global variable is needed when referencing it. PE
files can load just about anywhere in the process address
space. While they do have a preferred load address, you can't
rely on the executable file actually loading there. For this
reason, it's important to have some way of specifying
addresses that are independent of where the executable file
loads [12].

To avoid having hard coded memory addresses in PE files,
RVAs are used. An RVA is simply an offset in memory,
relative to where the PE file was loaded. For instance,
consider an .EXE file loaded at address 0x400000, with its
code section at address 0x401000. The RVA of the code
section would be:
 (Target address) 0x401000 – (load address) 0x400000 =
(RAV) (1)

To convert an RVA to an actual address, simply reverse the
process: add the RVA to the actual load address to find the
actual memory address. Incidentally, the actual memory
address is called a Virtual Address (VA) in PE parlance.
Another way to think of a VA is that it's an RVA with the
preferred load address added in.

• Importing Functions
When we use code or data from another DLL, we're importing
it. When any PE files loads, one of the jobs of the windows
loader is to locate all the imported functions and data and
make those addressees available to the file being loaded.

D. PE-File Layout
The PE file layout is shown in Figure 1. There are two

unused spaces in PE file layout [12], and these unused spaces
are suggested to hide a watermark.The size of the second
unused space is different from one file to another [12].

The most important reason behind the idea of this system is
that the programmers always need to create a back door for all
of their developed applications, as a solution to many
problems such that forgetting the password. This idea leads
the customers to feel that all programmers have the ability to
hack their system any time. At the end of this discussion all
customers always are used to employ trusted programmers to
build their own application [12].

Programmers want their application to be safe any where
without the need to build ethic relations with their customers.
In this system a solution is suggested for this problem. The
solution is to hide the password in the executable file of the
same system and then other application to be retracted by the
customer himself.Steganography needs to know all files
format to find a way for hiding information in those files. This
technique is difficult because there are always large numbers
of the file format and some of them have no way to hide
information in them.

Fig. 1 Typical 32-bit Portable File EXE File Layout

MS-DOS 2.0
Compatible.EXE Header

Unused

OEM Identifier
OEM Information

Offset To PE Header

MS-DOS 2.0 Stub
Program & Relocation

Unused

PE Header

Section Headers

Image Pages

• Import info
• Export info
• Fix-up info
• Recourse info
• Debug info

Base of Image
Header

MS-DOS 2.0
Section
(For MS-DOS
Compatibility Only)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1497

III. METHODOLOGY

A. System Concept
Concept of this system can be summarized as hiding the

password or any information beyond the end of an executable
file so there is no function or routine (open-file, read, write,
and close-file) in the operating system to extract it. This
operation can be performed in two alternative methods:

• Building the file handling procedure independently of
the operating system file handling routines. In this
case we need canceling the existing file handling
routines and developing a new function which can
perform our need, with the same names. This way
needs the customer to install the system application
manually as shown in Fig. 2.

• Developing the file handling functions depending on
the existing file handling routines. This way can be
performed remotely as shown in Fig. 3. The
advantage of the first method is it doesn't need any
additional functions, which can be identified by the
analysts.
The disadvantage of this method is it needs to be
installed (can not be operated remotely). The
advantage of the second method is it can be executed
remotely and suitable for networks and the internet
applications. So we choose this concept to
implementation in this research.

 Fig. 2 First Method of the System Concept

Fig. 3 Second Method of the System Concept

B. System Features
This system has the following features:

• The cover file can be executed normally after hiding
operation Because the hidden information already hide
after the end of file and thus cannot be manipulated as the
EXE file, therefore, the cover file still natural, working
normally and not effected, such as if the cover is EXE
files (WINDOWES XP SETUP) after hiding operation
it'll continued working, In other words, the EXE file can
be installed of windows.

• There is no limitation on the hidden file size where you
can hide any file of any size regardless of the size of
hidden information by structure on the property of the
EXE file, so that the EXE cannot identify the size of the
EXE file, so can using type of EXE file such as JDK
whose contain number of different size (72MB, 77MB or
65MB), other world disparity in the size of the executable
files, so can hide any size inside it without guessing the
real size of the information hidden by the attacker.
Furthermore, when hide after the end of EXE file, there is
no limitation of the size files which must be hiding after
the end of EXE file, open space of any size.

• It's very difficult to extract the hidden information it's

difficult to find out the information hiding , that is
because of three reasons:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1498

o The information hiding was encrypted before
hiding of the information by AES method;
this method very strong, 128-bit key would
be in theory being in range of a military
budget within 30-40 years. An illustration of
the current status for AES is given by the
following example, where we assume an
attacker with the capability to build or
purchase a system that tries keys at the rate
of one billion keys per second. This is at
least 1 000 times faster than the fastest
personal computer in 2004. Under this
assumption, the attacker will need about 10
000 000 000 000 000 000 000 years to try all
possible keys for the weakest version.

o The attacker impossible guessing the
information hiding inside the EXE file
because of couldn't guessing the real size of
(EXE file and information hiding).

o The information hiding should be decrypted
after retract of the information.

• The hidden information can be of any type of multimedia

files (Text, Audio, Video or Image) of any size without
limitation and also can hidden all type of multimedia files
in the same time inside the same cover, so can put (Text,
Image, Video and Audio) in one folder and compressed
them and then choose the compressed folder as a
information hiding, in that way can hidden all in the same
time.

• Virus detection programmers can't detect such as files, the

principle of antivirus check are checking from beginning
to end. When checking the EXE files by antivirus, will
checked it from beginning to end of it ,since the principle
of information hiding for that system is after end of file,
the antivirus discontinue checking in the end of file so
didn't mention to anything inside the EXE file while
doing scanning.

C. The Proposed System Structure
To protect the hidden information from retraction the

system encrypts the information by the built-in encryption
algorithm provided by the VB.net. The hiding operation can
be performed as shown in Fig. 4. The retraction operation can
be performed as shown in Fig. 5.

The following algorithm is the hiding operation procedure:

Fig. 4 Hiding Operation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1499

The following algorithm is retraction operation procedure:

Fig. 5 Retraction Operation

IV. TESTING OF THE SYSTEM
There are two fundamental approaches to identifying test

cases, these are know as functional and structure testing, each
of these approaches has several distinct test case identification

methods, more commonly called testing methods, functional
testing is based on the view that any program can be
considered to be a function that maps values from its input
domain to values in its output range. (Function, domain and
range) this notion is commonly used in engineering. There are
two distinct advantages to functional test cases: they are
independent of how the software is implemented, so if the
implementation changes, the test cases are still useful and test
case development can occur in parallel with the
implementation, thereby reducing overall research
development interval, on other side, functional test cases
frequently suffer from two problems: there can be significant
redundancies among test cases, and this is compounded by the
possibility of gaps of untested software. As shown in Fig. 6.

Fig. 6 Approaches to Identifying Test Cases

When systems are considered to be "black boxes" test cases

are generated and executed from the specification of the
required functionality at defined interfaces, this leads to the
function of the black box is understood completely in terms of
its inputs and outputs, as shown in Fig. 7. Black-box testing
has some important advantages:

It doesn't require that we see the code we are testing.
Sometimes code will not be available in source code form, yet
it can still construct useful test cases without it. The person
writing the test cases does not need to understand the
implementation.

The test cases do not depend on the implementation. They
can be written in parallel with or before the implementation.
Further, good black-box test cases do not need to be changed
even if the implementation is completely rewritten.

Constructing black-box test cases causes the programmer to
think carefully about the specification and its implications.
Many specification errors are caught this way.

The disadvantage of black box testing is that its coverage
may not be as high as we'd like, because it has to work without
the implementation. But it's a good place to start when writing
test cases, with the functional approach to test case
identification; the only information that is used is the
specification of the software.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1500

Fig. 7 Black box

A. Process of the Test

1. Test Case One:
Make compare between cover files size after and before hiding
operation:

• Four tables to compare between size after and before
hiding operation:

o Table II: different size for cover with different type
of the EXE files and same size for information of
each type for multimedia files (text, video, audio and
image).

o Table III: same size for cover with same type of the
EXE files and different size for information of each
type for multimedia files (text, video, audio and
image).

o Table IV: different size for cover with same type of
the EXE files and Same Size for information of each
type for multimedia files (text, video, audio and
image).

o Table V: different size for cover with same type of
the EXE files and different size for information of
each type for multimedia files (text, video, audio and
image).

2. Test Case Two:
Testing for the usage of EXE files after the hiding operation
done:

• Four pictures approve the cover (EXE Files) usage
after the hiding operation and these pictures divides
to:

i. First picture for text.
ii. Second picture for image.

iii. Third picture for video.
iv. Fourth picture for audio.

3. Test Case Three:
Testing for Scanning Result (undetectable by antivirus
software):

• Four pictures approve the cover (EXE Files)
undetectable for antivirus software after the hiding
operation and these pictures divides to:

i. First picture for text.

ii. Second picture for image.
iii. Third picture for video.
iv. Fourth picture for audio.

B. Test Cases Details
Test cases are known preconditions, inputs and expected

results, which is worked out before the test is executed. The
definition of software installation needed for test an
(Preconditions) and the definition inputs should needed for
test an (Inputs) and the definition predictable results for
outputs an (Except Results).

• Preconditions:

1. Installation (Microsoft Windows XP for Any
 Version or Vista).

2. Installation (Microsoft Visual Studio 2005).
3. Installation (Microsoft .NET Framework

SDK v2.0).
4. Installation (Microsoft Excel Worksheet 2003

 Or 2007).
5. Installation (Microsoft Office Word

Document 2003 or 2007).
6. Installation (Software Antivirus).
7. Installation (Real Player Programme).
8. Installation (Jet Audio Programme).
9. Installation (ACDSEE Programme).
10. System application for this research.

• Inputs:
The system has two types of inputs:

• Inputs for cover (EXE Files):
o Five types of cover (EXE Files) for
 different size.

• Inputs for information hidden:
o Four text for different size.
o Four image for different size.
o Four video for different size.
o Four audio for different size.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1501

TABLE I
INPUTS FOR TEST CASES

• Expected Results:
o Secure cover (EXE Files).
o There are no limitations on the hidden files size.
o The hidden information can be of any type for

multimedia files.
o These cover (EXE Files) usage after the hiding

operation.
o These cover (EXE Files) undetectable for antivirus

software after the hiding operation.

C. Test Case One
In this test case can be shown tables for cover files and

information hidden after and before hiding operation for all
types of multimedia files (text, image, audio and video),which
related with this system, approve these cover (EXE Files) are
secure and There are no limitations on the hidden files size.

 TABLE II
DIFFERENT SIZE FOR COVER WITH DIFFERENT TYPE OF THE EXE FILES AND

SAME SIZE FOR INFORMATION OF EACH TYPE FOR MULTIMEDIA FILES (TEXT,
IMAGE, AUDIO AND VIDEO)

 TABLE III
SAME SIZE FOR COVER WITH SAME TYPE OF THE EXE FILES AND

DIFFERENT SIZE FOR INFORMATION OF EACH TYPE FOR MULTIMEDIA
FILES (TEXT, IMAGE, AUDIO AND VIDEO)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1502

 TABLE IV
DIFFERENT SIZE FOR COVER WITH SAME TYPE OF THE EXE FILES AND SAME

SIZE FOR INFORMATION OF EACH TYPE FOR MULTIMEDIA FILES (TEXT,
IMAGE, AUDIO AND VIDEO)

 TABLE V
DIFFERENT SIZE FOR COVER WITH SAME TYPE OF THE EXE FILES AND
DIFFERENT SIZE FOR INFORMATION OF EACH TYPE FOR MULTIMEDIA

FILES (TEXT, IMAGE, AUDIO AND VIDEO)

For all tables above in test case one can be concluding:
There are no limitations on the hidden files size inside the

cover files so can be hide different size inside the EXE files
as shown in the Table II and Table III.

The attacker can't be attack the information hiding that's
because can't guess the EXE files size because the EXE files
size don't have Constant size as shown in the Table IV and
Table V, where it can be different size for the same type of

EXE files like cover file number 5 they have three sizes in
same type of cover file.

D. Test Case Two
In this test case can be shown Picture for cover files after

hiding operation of all types of multimedia files (text, image,
audio and video), which related with this system, approve
these cover (EXE Files) usage after the hiding operation.

TABLE VI

INPUTS AND OUTPUTS FOR TEST CASE TWO

• Text:

Fig. 8 After Hiding Operation inside the (Hiding Folder) that

Executable File (Cover 1) Still Working

• Image:

Fig. 9 After Hiding Operation inside the (Hiding Folder) that

Executable File (Cover 2) Still Working

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1503

• Video

Fig. 10 After Hiding Operation inside the (Hiding Folder) that

Executable File (Cover 3) Still Working

• Audio

Fig. 11 After Hiding Operation inside the (Hiding Folder) that

Executable File (Cover 5) Still Working

E. Test Case Three
In this test case can be shown picture for cover files after

hiding operation for all types of multimedia files (text, image,
audio and video), which related with this system, approve
these cover (EXE Files) undetectable for antivirus software
after the hiding operation.

TABLE VII
INPUTS AND OUTPUTS FOR TEST CASE THREE

• Text:

Fig. 12 The Executable File (Cover 1) Inside (Hiding Folder)

Immune to Anti-virus Program

• Image:

Fig. 13 The Executable File (Cover 2) Inside (Hiding Folder)

Immune to Anti-virus Program

• Video

Fig. 14 The Executable (Cover 3) File Inside (Hiding Folder)

Undetectable by Anti-virus program

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1504

• Audio

Fig. 15 The Executable (Cover 5) File Inside (Hiding Folder)

Immune to Anti-virus Program

V. EVALUATION OF THE SYSTEM
1. There are no boundaries on the hidden files size within

the cover files so can be hide different size inside the
EXE files.

2. The executable file still works after its use as cover for
embedding data.

3. The executable file undetectable for Norton antivirus
software after the hiding operation.

4. The size of cover files to be used in testing (520KB-
77.4MB), the text (10.5KB-4.06MB), the Image (156KB-
2.98MB), the audio (1.83MB-4.31MB) and the video
(3.55MB-295MB), is found that when the size of cover
EXE files upgrade, the secure is very height, when the
information hidden less inside the cover ,the cover file in
this case has been more secure, from the Information
which is listed in the above tables (Table I, Table II,
Table III, Table IV and Table V), concludes that:

• The proportion of potential discovery of embedded data
(Text 2%, Image 3%, Audio 4%, Video 5%).
• The percentage of success achieved by the innovative
system (Text 97%, Image 97%, Audio 96%, Video 95%).

TABLE VIII

CONCLUSION OF THE EVALUATION

VI. CONCLUSION
The .EXE files are one of the most important files in

operating systems and in most systems designed by developers
(programmers/software engineers), and then hiding
information in these file is the basic goal for this research,
because most users of any system cannot alter or modify the
content of these files.

We get the following conclusions:
PE files structure is very complex because they depend on

multi headers and addressing, and then insertion of data to PE
files without full understanding of their structure may damage
them, so the choice is to hide the information beyond the
structure of these files. Most anti virus systems do not allow
direct write in executable file, so the approach of the proposed
system is to prevent the hidden information to observation of
these systems. One of the important conclusions in
implementation of the proposed system is the solving of the
problems that are related to the size of cover file, so the hiding
method makes the relation between the cover and the message
independent. The encryption of the message increases the
degree of security of hiding technique which is used in the
proposed system. The proposed hiding technique is flexible
and very useful in hiding any type of data for files (message)
because there are no limitations or restrictions on the type of
the message (image, sound, text).

VII. SUGGESTIONS FOR FUTURE WORK
There are many suggestions for improving the proposed

system, the main suggestions are:
• Developing the method which is used in proposed system to

deal with other PE files such as "dll', "sys", "cpl", and
"ocx".

• Improvement of the security of hiding technique by adding
compression function of the message before the hidden
operation.

• Developing the proposed system to deal with other
executable files created by other operating systems like
(LINUX, UNIX, OS/2).

• Improvement of the security of the proposed system by
changing the encryption methods for other methods such
as (MD5, BLOWFISH)

ACKNOWLEDGEMENT
This work was supported in part by the University of

Malaya, Kuala Lumpur Malaysia.

REFERENCES
[1] Avedissian, L.Z," Image in Image Steganography System”, Ph.D.Thesis,

Informatics Institute for Postgraduate Studies (IIIPS), University of
Technology, Baghdad, Iraq, 2008.

[2] Zaidan, B. B., Zaidan A. A. and Othman F., “Enhancement of the
amount of hidden data and the quality of image,” Faculty of Computer
Science and Information Technology, University of Malaya, Kuala
Lumpur, Malaysia,2008.

[3] C. J. S. B,” Modulation and Information Hiding in Images”, of Lecture
Notes in Computer Science, University of Technology, Malaya, Vol.
1174, pp.207-226, 2007.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1505

[4] Clelland, C.T.R, V.P & Bancroft, “Hiding Messages in DNAMicroDots”,
International Symposium on Industrial Electronics (ISIE) , University of
Indonesia , Indonesia, Vol. 1, pp.315-327, 2007.

[5] Davern, P.S, M.G, “Steganography It History and Its Application to
Computer Based Data Files”, School of Computer Application (SCA),
Dublin City University. Working Paper. Studies (WPS), Baghdad, Iraq,
2007.

[6] Dorothy, E.R, D.K, “Cryptography and Data Security”, IEEE
International Symposium on Canada Electronics (ISKE), University of
Canada, Canada, Vol.6, pp.119-122, 2006,

[7] Johnson, N. F. S. D, Z., “Information Hiding: Steganography and
Watermarking-Attacks and Countermeasures”, Center for Secure
Information Systems (CSIS), Boston/Dordrecht/London, George Mason
University, 2006.

[8] Katzenbeisser, S. P., A. P, “Information Hiding Techniques for
Steganography and Digital watermarking”, available from: Artech house
pub, 2005.

[9] G. Doërr and J. Dugelay, “Security pitfalls of frame –by-frame
approaches to video watermarking,” IEEE Transactions on Signal
Processing, vol. 52, 2004, pp. 2955-2964.

[10] Mehdi Kharrazi, Husrev T. Sencar and Nasir Menon, “Image
steganography: concepts and practice,” Lecture Notes on Computer
Science, vol. 2939, 2004, pp. 204-211.

[11] Katzenbeisser S. & Petitcolas, F. A., “Information Hiding Techniques for
Steganography and Digital Watermarking”, Artech House, USA, 2001.

[12] Mbaugh, S. E., “Computer vision and image processing, a practical
approach using CVIP tools,” Ph.D., 1998.

