
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2226

High Level Synthesis of Kahn Process Networks
(KPN) for Streaming Applications

Attiya Mahmood, Syed Ali Abbas, Shoab A. Khan
{attiya_t_m, aliabbas_5}@yahoo.com

shoab@ceme.edu.pk
College of E & ME, NUST, Rawalpindi, Pakistan

Abstract—Streaming Applications usually run in parallel or in
series that incrementally transform a stream of input data. It poses a
design challenge to break such an application into distinguishable
blocks and then to map them into independent hardware processing
elements. For this, there is required a generic controller that
automatically maps such a stream of data into independent processing
elements without any dependencies and manual considerations. In
this paper, Kahn Process Networks (KPN) for such streaming
applications is designed and developed that will be mapped on
MPSoC. This is designed in such a way that there is a generic C-
based compiler that will take the mapping specifications as an input
from the user and then it will automate these design constraints and
automatically generate the synthesized RTL optimized code for
specified application.

Keywords—KPN, DFG, FPGA

I. INTRODUCTION

TREAMING applications are usually represented as a set
of simultaneous processes that take a stream of input data
and then transforms them into processed output stream of

data. Implementing such an application on hardware poses a
large challenging modeling problem. For this, KPN is the best
ever representation to model such applications on hardware.
KPN is a set of independent processes that communicate
through point-to-point fashion over unbounded buffers with
blocking Read and Non-blocking Write. This provides a very
simple mechanism to map an application on hardware or
software as KPN. The Reads and Writes also elevate the design
from the use of complicated schedules. By this, streaming
applications are mapped on independent processes working
autonomously after acquiring sufficient data samples on its
input buffers. Such data samples are called tokens in KPN’s
terminology and such an execution is called firing of tokens.

Streaming applications are usually mapped on FPGA and
ASIC. The main idea behind this work is to propose a system
in which streaming applications will be broken down into set of
separate independent processing elements (these processing
elements will be set of FPGAs or ASICs), mapped through
KPN and inter-process communication between these
processing elements will be performed through NOC Switch.
This paper demonstrates the mapping constraints on these
processing elements and then finally generates a generic
customized controller that automatically maps these
applications on hardware. By this, the designer can simply add
any number of available processors in streaming applications
and automatically map different types of streaming
applications on hardware without any manual settings and
dependencies.

II. RELATED WORK

No C-based compiler has yet been introduced in research
that can automatically generate RTL synthesized KPN model
based on the specifications of streaming application. But there
are so many design issues in KPN implementation. A lot of
research has been undergone in KPN buffer sizing, artificial
deadlock detection and real time scheduler for KPN.

In 1974, Kahn proposed semantics of simple language for
parallel programming. In this work, he proposed a parallel
computation model where any application can be modeled into
set of concurrent independent processes with unbounded FIFOs
(First-In-First-Out) buffers at its inputs and outputs. Theses
independent concurrent processing elements can be executed
on any parallel processing units without incurring any overhead
and dependencies. His main contribution of work is illustrated
in [1]. [2] introduced some new features of KPN with regards
to its task level parallelism and its deterministic behavior. In
real sense, no memory allocation can be unbounded, so a lot of
research has been made in optimum buffer sizing for KPN
implementation. [3] proposed an automatic buffer sizing for
KPN on MpSoC. They proposed an idea of automatic buffer
sizing by starting with some fixed sizing and incrementally
increase buffer sizing wherever needed. In KPN, FIFO read is
blocking and FIFO write is non-blocking based on the
assumption of unbounded buffer size. When we start imposing
the impact of finite memory sizes then an artificial deadlock
issue arises. [4] demonstrated the effectiveness of KPN in
media and signal processing applications and presented the
method of effective and bounded execution of KPN. [5,6] deals
with this artificial deadlock detection when all the processes in
the process network are blocked then they claim of finding the
effective solution.[7] suggested a new idea of an early
detection of artificial deadlocks in the process network of
eclipse shape. In recent so many years, KPN has been modified
in the set of different DSP designs because it is compositional
and it allows parallelism. The output of the KPN is
independent of the flow of sequence of execution. [8] presented
the idea of designing and analysis of DSP designs using Kahn
process networks. [9] proposed the idea of basic transformation
of basic DSP designs into Kahn networks, but he did not focus
on the task level decomposition of the particular DSP design
and also the automatic controller for it. [10] diminished the
concept of artificial deadlock in process networks and proposed
a design of real time scheduler for process networks on
multiprocessor system on chip. Because of KPN’s
effectiveness, it is consistently used for mapping streaming
(Audio or Video) applications on MpSoC. Compaan and Laura

S

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2227

in [11] projected a system design where they take an
application written in Matlab and automatically give the
transformation which can be mapped on to target platform.
YAPI in [12] provided a C++ interface that gives KPN
implementation on single processor. [13] offered the idea of
KPN exploration on multiprocessor system on chip.

In this paper, our field of interest lies in streaming
application mapping. For that, we have proposed an
architecture in which we have designed a C-based compiler
that can automate the design constraints and automatically
generates the synthesized HDL implementation of KPN that is
application independent.

III. DESIGN METHODOLOGY

As KPN is a network of concurrent processes that
communicates through a set of unbounded FIFO (First In First
Out) Buffers. As unbounded FIFO size is not realizable in true
sense, so confining the size of FIFOs to minimum without
affecting the network performance is an interesting research
problem and gaining more attention for researchers.

In this research work, The typical KPN structure is
implemented on a reconfigurable platform. Fig. 1 demonstrates
the basic KPN model in which an application is broken down
into set of processing units and their communication is
performed through set of FIFOs. Each processing unit is
defined with its name and number of cycles or time units, they
take in execution. Also, each processing node is connected to
set of FIFOs at its input and output. These nodes will not
execute as long as it finds desired number of RC (Rate of
Consumption) tokens on its input FIFO buffers. The processing
units will check on its input FIFOs, when it acquires sufficient
tokens, it will start executing. The control is given to this
processing unit as long as it executes. After its execution, RP
(Rate of Production) number of processed tokens will be
written on its output buffers. In this model, Node ‘A’ is taking
the continuous stream of data. When its input FIFO buffer ‘F1’
will store two tokens, then process A will fire and takes eight
cycles for its execution. After completing this processing, it
will write two, three and one tokens on FIFOs ‘F2’, ‘F3’ and
‘F4’. Process ‘B’ and ‘C’ will execute when they find two and
one tokens on its input FIFO buffers i.e. ‘F2’ and ‘F4’. Process
‘D’ will not execute until it finds two, three and one tokens on
its input buffers i.e. ‘F5’, ‘F3’ and ‘F6’. Process ‘D’ is
continuously writing data to its output buffer ‘F7’. This is how
streaming applications are mapped through KPN structure.

Fig. 2 shows the very basic example of JPEG compression.
Implementing JPEG is a good example to explain effectiveness
of KPN in streaming applications. The raw image taken from
the source is saved in FIFO ‘F1’. Node ‘1’ performs the RGB
to YCbCr conversion and stores the transforms image to FIFO
‘F2’. The Node ‘2’ waits to perform the conversion to take
place and once FIFO ‘F2’ acquires this data, it fires and
computes DCT and writes the result in FIFO ‘F3’.Now Node
‘3’ and ‘4’ sequentially fire and compute Quantization and
Entropy coding and write data in FIFO ‘F4’ and ‘F5’. This is
how any streaming application can be mapped through KPN
structure without incurring any overheads.

Fig. 1 Basic KPN model

Fig. 2 KPN implementing JPEG compression

The above example shows the effectiveness of KPN in
modeling streaming applications on reconfigurable hardware
platforms. Thus there is a great need arises to design a
controller that automatically maps such diverse applications on
reconfigurable platforms like FPGAs or ASICs.

Fig. 3 shows our proposed scheme that is implementing a
KPN based mapping of streaming applications on computing
platforms. Here, we perform the following steps

 First, we take a configuration file of specific
format from the user that lists the requirement
specifications to generate automatic KPN i.e.
behavior of a node i.e. whether it is combinational,
sequential, taking fixed cycles or a dynamic node,
how many nodes are present in a network, how
many FIFO buffers are required to model this
specific application, buffer sizing, rate of
consumption and production parameters on each
link, number of time units required to perform
execution, algorithmic delays, self loops
information and input stream of raw data that
needs to be processed.

 Then, this configuration file is passed to C-based
compiler that will automate this file. This compiler
will read the design specifications and
automatically generate synthesized RTL Verilog
code of KPN controller and its test bench. This

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2228

compiler will also automatically generate RTL
Verilog codes of all the processing nodes present
in this network. “Fig. 3,” shows listings of files
generated by this compiler. It generates FIFO
Verilog File that provides basic FIFO operation
that involves simple reads and writes into FIFO. It
also gives the information of rate of consumption
status of the FIFO. By, this, we can calculate
whether RC tokens are accumulated in FIFO
buffer or not.

 Next, this compiler generates set of Verilog files
depicting all the processing nodes behaviors. N
processing nodes files are generated specifying
number of data input units, output units and total
number of time units by each processing node to
perform its successful execution.

 Next, this compiler will generate the main
controller file that will pass control signal to each
processing module and manage all the
coordination and timing constraints among each
component. It will continuously view the status of
each element and provide the control to each block
when is desirable.

 Lastly, this C-based compiler will also generate
the Verilog based test bench module that will
verify the controller behavior managing all the sub
units in the design.

 Thus by this, an automatic mapping of a streaming
applications is performed through this C-based
compiler. This compiler will allow you to map any
type of applications on reconfigurable platforms
by specifying different design constraints in
configuration file.

A. Algorithm
 KPN_Controller(); //Main File

Nodes Number of available nodes
Links  Total number of available links
FIFOs  Total number of FIFOs required, storing
 information at links

Fig. 3 System Model

For i  1 to Links
 RC[i] Rate of consumption parameter at link i

 RP[i] Rate of production parameter at link i
 Delay[i] Algorithmic delay at link i

End For

Topology Matrix Generation

For i 1 to Nodes
 Throughput[i]Execution time for node i

End For

For i 1 to Nodes
 If (RC tokens found at its each connected Links)
 While FIFO_Read(); //Read Tokens from FIFO

 If(all input FIFOs are Read)
Break

End If
 End While

 Done=Call Process_node(); //Functionality of
 //node is performed

 If(Done)
While FIFO_Write(); //Write processed data
 //tokens

If(all input FIFOs are Written)
Break

End If
 End While
 End If

 End If
End for

 FIFO_Read(); //Reading Data from FIFO

If(Read)
If(FIFO_Empty_Flag)

Process is Blocked
Else

Output FIFO(index)
End If Else

Else
Do Nothing

 End If Else

 FIFO_Write(); //Writing Data to FIFO

If(Write)
If(FIFO_Full_Flag)

Process is Blocked
Else

FIFO(index) Input Data
End If Else

Else
Do Nothing

End If Else

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2229

 Process(); //Processing Units

For i 1 to throughput
//Processing;

End For
Done =1;
Return (Done);

IV. IMPLEMENTATION DETAILS

Focusing on implementation of our proposed scheme
layout, we used some useful tools to put this layout in
realization. First, we simulated this design approach in
MATLAB version 7.0 for the verification of controller design
algorithm. It was very desirable because we need to specify our
input variables and all the possible instances of this controller.
After this controller design simulation, we then implemented it
based on the hardware constraints. For that, it was
advantageous for us to first analyze this design on hardware
then it would be possible for us to focus on its generic design
realization. So, we first designed this controller in Verilog (that
is a hardware descriptive language). For that, we used the tool
Modelsim version 5.7g. After this hardware design
consideration and its successful implementation on hardware,
we designed the generic compiler in C-language with the use of
Visual C Version 6.0 tool. By this, we designed the C-based
compiler that can automatically generate synthesized Verilog
code of any streaming application.

For this central controller, we need to first divide the
streaming application into set of processing nodes and then
classify the nodes as combinational, sequential (taking fixed
clock cycles) or dynamic i.e. taking variable number of clock
cycles for its execution. A sample clock is the clock that is
taking new sample in the logic whereas a circuit clock is
usually much faster than a sample clock and executes the logic
in each node. A combinational node does not require any
control signal except the reset signal that is used to reset any
feedback registers in the design. A node requiring pre defined
number of clock cycles requires a start signal from the
controller whereas the dynamic node requires a start signal
from the controller and after its execution it generates the done
signal to notify the controller about its completion.

Fig. 4 shows a simple DFG example that has three processing
elements/nodes A, B, and C. These processing elements are
taking 3, 2 and 1 clock cycles for their execution. Also, these
processing nodes will execute only as long as it acquires
sufficient number of data tokens on their input buffers. There
are four FIFO buffers for temporarily holding data values.
Also, nodes are listed with their rate of consumption and
production parameters. Rate of consumption is defining the
number of data tokens sufficient for node to process and rate
of production parameter defines the number of data values that
are produced by the respective processing element.

A,3 C,1B,2

F1 F2 F3 F4
Data_In Data_Out

1 11 1 1 1

Fig. 4 An example of DFG mapped by KPN

A

KPN BASED CENTRALIZED CONTROLLER

B C

CLK-G CLK-g rst_n

CLK-G

CLK-g

Data_In Data_Out

Control Signals

External Clock

Data Lines

Reset Signal

Internal Clock

En_AStart_A Start_B En_B Start_C En_C

Fig. 5 KPN based centralized controller for above example

Fig. 5 shows the block diagram of the centralized controller
that is automatically generated for this application and can be
executed and verified by C-based compiler. This controller
shows that there are three processing elements that are running
on circuit clock that is usually faster than sample clock. Sample
clock CLK_G is the clock on which every new sample is
acquired for processing while CLK_g is the circuit clock on
which every DSP component is mapped. Controller will send
start signals to respective nodes when they have acquired
sufficient tokens on their input buffers. After this start to
execute signals, the process node will take throughput number
of clock cycles for their execution. Following these throughput
number of clock cycles, the controller automatically enables
the respective output buffers for holding the processed output
data for temporary storage. This is how any DSP application
can be divided in to sub-units. By making its execution
independent, now, this DSP design can be mapped on set of
processors running concurrently.

Fig. 6 shows the simulation results for this example. C-
based compiler is designed in Microsoft Visual C++ version
6.0 professional edition. This diagram shows that our C-based
compiler has generated synthesized Verilog code of the above
DSP design that is then run in Modelsim version 5.7 (Tool for
simulating Verilog based design). This diagram demonstrates
that data stream is coming to this application domain. At each
positive edge of clock, RC parameters of all nodes are checked.
Once RC parameter has attained for particular node then the
Process_enable signal is asserted. After this, the controller
waits for throughput number of clock cycles for process’s
execution, and then Process_done signal is asserted. This is
how information is processed in our network designed model.

Fig. 7 shows another example that is used here just for
demonstration purpose of our proposed work [14]. The DFG
(Data Flow Graph) symbolizes best a streaming application. In
DFG, an application is represented as directed graph G = <V,
E> where V is the Vertex or the set of nodes and E is the
directed edge representing interconnections between set of
vertices. We are assuming that this is a streaming application
whose graph is shown in Fig. 4. By taking this graph, we will

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2230

Fig. 6 Timing Diagram of controller generated by C-based compiler

generate an automatic KPN controller for this application that
can be mapped on any hardware. In this figure, node ‘A’ is a
combinational node while nodes ‘B’, ‘C’, and ‘E’ take fixed
number of seven, eight, and nine predefined number of circuit
clock cycles. The node ‘D’ dynamically executes and takes
variable number of circuit clock cycles. Each black dot shows
an algorithmic delay where data from previous iteration is
used, so in hardware realization, they will run on sample clock.
Based on these specifications, a generic controller can easily be
designed.

Fig. 8 shows the block diagram of central generic
controller that is automatically generated based on this
example. Nodes with predefined number of clock cycles like
‘B’,’C’, and ‘E’ require a START signal from the controller
and then controller counts for the number of cycles for the node
to complete its execution. The controller then asserts the output
enable signal to the register (particularly FIFO in this case) at
the output of each node. In case of dynamic node ‘D’, the
controller not only notifies the node to start its execution rather
the node also after its execution asserts a DONE signal, as for
the design in discussion a DONE is asserted and the controller
then asserts En_D to latch the output from node ‘D’ to a
register. The input and output to the DFG and the dots on the
edges are replaced by the register clocked by sample clock
CLK_G whereas the rest of logic in the nodes and the registers
at the output of each node is clocked by circuit clock CLK_g.
All the feedback registers are reset using a global rst_n signal.

Fig. 7 An example of DFG mapped by KPN

Fig. 8 KPN based centralized controller for above example

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2231

Fig. 9 shows the timing diagram of the KPN controller for
the above quoted design example generated by the C-based
Compiler. This diagram shows that when reset is active high,
all the FIFO’s and register contents are initialized to zero.
There is no valid output at the data-out vector. There is high
impedance indication ‘Z’ at the output shown with red line at
the start of data_out signal in timing diagram. When reset
signal is reasserted, then at the next positive edge of clock,
input stream (data_in) vector starts to be written in internal
FIFOs. This diagram lists the throughput clock cycles that are
needed for each processing element for its execution. Data_In
is the vector array that is carrying the raw information to be
processed by this network. When the Rate of consumption
parameters of respective process is satisfied then the write
signal is asserted and computation units begin taking data from
dedicated buffers/FIFOs. These computation units then take
throughput number of circuit clock cycles for their execution
and final processed data is to be written on output
buffers/FIFOs. At that time, there is no valid output because
processing is performed in its internal processing units, so the
output is held zero. After the execution of internal processing
units, the continuous stream of valid output occurs on output
(data_out) vector. This is how any DSP application can be
scheduled by this C-based compiler. The outcome of this work
is that designer can map any set of DSP application on this
platform and rescheduled accordingly.

V. FUTURE WORK

In this scheme, structure of KPN that can easily be mapped
on any reconfigurable platforms have developed. For that, we
ask the specification from the user of specific format, and then
the compiler reads it and gives an automatic HDL based
controller for hardware mapping. Future work will be the
automatic generation of this specification file. By simply
viewing the streaming application, an automatic design file will
be generated that will be then passed to this generalized
compiler which is giving the hardware implementation of KPN
framework.

VI. CONCLUSION

In this paper, framework of KPN have proposed and
implemented taking the input specifications of streaming
applications resulting into automatic synthesized RTL code
generation. This is essential because the actual critical
streaming application is constituent of thousands or millions of
such independent components or processing elements and
managing/controlling their processing is a big challenge. Also,
Execution time of such application requires more than a week
and when a matter of designing a manual controller for such
application comes, it becomes a huge overhead. Lastly, if the
design goes fail then all your effort will go down. For this
consideration, we have come to this point that designers must
have application specifications/demands and based on that, an
automatic synthesized RTL optimized controller must be
generated without any manual considerations and overheads
fulfilling their current design demands and if required, then it
can easily be upgraded according to restructured design.

Fig. 9 Timing Diagram of controller generated by C-based compiler

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:12, 2009

2232

REFERENCES

[1] Gilles Kahn, “The semantics of a simple language for parallel
programming”. In Jack L. Rosenfeld, editor, Information Processing 74:
Proceedings of the IFIP Congress 74, pages 471-475. IFIP, North-
Holland, August 1974.

[2] Edward A. Lee and Thomas M. Parks, “Dataflow process networks,”
Proceedings of the IEEE, vol. 83, no. 5, pp. 773–799, May 1995.

[3] Eric Cheung, Harry Hsieh, and Feris Baralin, “Automatic Buffer Sizing
for Rate-Constrained KPNApplications on Multiprocessor System-on-
Chip,” Proceedings of IEEE, pages 37-44, 2007.

[4] Marc Geilen and Twan Basten, “Requirements on the execution of kahn
process networks,” In Programming Languages and Systems, 12th
European Symposium on Programming, ESOP 2003, pages 319-334,
Warsaw, Poland, April 2003. Lecture Notes in Computer Science vol.
2618.

[5] Twan Basten and Jan Hoogerbrugge, “Efficient execution of process
networks”. In A. Chalmers, M. Mirmehdi, and H. Muller, editors, Proc.
Communicating Process Architectures, pages 1-14, Bristol, UK,
September 2001. IOS Press

[6] Thomas M. Parks, “Bounded Scheduling of Process Networks,” PhD
Thesis, EECS Department, University of California, Berkeley, CA,
December 1995.

[7] Bharath N., S.K. Nandy, and Nagaraju Bussa, “Artificial Deadlock
Detection in Process Networks for Eclipse”, Proceedings of 16th

International Conference on Application-Specific Systems,
Architectures and Processors, IEEE Computer Society, 1063-6862/05,
2005

[8] Ceponis J., Kazanavicius E., Mikuckas A., “Design and Analysis of DSP
systems using Kahn process Networks,” DSP Lab, Kaunas University of
technology, ISSN 1392-2114Ultragarsas, Nr .4(45), 2002.

[9] Zvironas A., Kazanavicius E. Partitioning of DSP tasks to Kahn
network. KTU. Kaunas. Ultragarsas. ISSN1392-2114, 2002. Nr. 2(43).

[10] Javed DULLOO, Philippe MARQUET, “Design of a Real-Time
Scheduler for Kahn Process Networks on Multiprocessor systems,”
Rapport LIFL # 2003-06, september 2003.

[11] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis,
and Ed Deprettere, “System Design using Kahn Process Netwroks: The
Compaan/Laura Approach,” Presented at DATE’04, Paris 16-20 Feb
2004.

[12] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M.
Kruijtzer, P. Lieverse, K. A. Vissers, and G. Essink, “Yapi: application
modeling for signal processing systems,” in DAC ’00: Proceedings of
the 37th conference on Design automation. New York, NY, USA: ACM
Press, 2000, pp. 402–405.

[13] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere, “System
level design with spade: an m-jpeg case study,” in ICCAD ’01:
Proceedings of the 2001 IEEE/ACM international conference on
Computer-aided design. Piscataway, NJ, USA: IEEE Press, 2001, pp.
31–38.

[14] Dr. Shoab A. Khan, Book: “Digital Design for Signal Processing
Systems” to be published.

