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Abstract—Mesoscopic perovskite solar cells (mp-PSCs) with 

mesoporous bilayer were fabricated under ambient conditions. The 
bilayer was formed by capping the mesoporous TiO2 layer with a 
layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared 
through the one-step method and was used as the light absorber. The 
mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited 
optimized electrical parameters, compared with the PSCs that 
employed only a TiO2 mesoporous layer, with a current density of 
23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and 
a power conversion efficiency of 11.2%. These results indicate that 
the formation of a proper semiconductor capping layer over the basic 
TiO2 mesoporous layer can facilitate the electron transfer, suppress 
the recombination and subsequently lead to higher charge collection 
efficiency. 
 

Keywords—Ambient conditions, high efficiency solar cells, 
mesoscopic perovskite solar cells, TiO2/In2O3 bilayer. 

I. INTRODUCTION 

N the past years a new class of third generation 
photovoltaics has emerged based on organometal halide 

perovskites. While results of the first efficient perovskite solar 
cells (PSCs) were published in 2012 [1], their efficiencies 
were rapidly lifted to 20% the very next year. Moreover, in 
early 2016 researchers managed to manufacture PSCs with 
improved stability and a power output of 21.1% [2]. 
Perovskite materials are direct bandgap semiconductors 
described by the general formula ABX3, where X is an anion 
and A and B represent cations. The cation A is organic, 
typically methylammonium or formamidinium while cation B 
is lead (Pb) or tin (Sn) and the anion X is a halogen ion 
usually iodine, chlorine, bromine or a mixture of them [3]-[5]. 

For the fabrication of PSCs there are basically two different 
device architectures [6]. Planar or thin-film PSCs (Fig. 1 (a)) 
consist of a flat perovskite layer between n-type and p-type 
semiconductor. In this device structure, once the incident light 
is absorbed, the charge generation and the charge extraction 
are both occurring in the perovskite layer [7]-[9]. In the 
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mesoscopic or sensitized PSCs (Fig. 1 (b)) the active layer 
consists of a mesoporous semiconductor which is sensitized 
with the perovskite. The perovskite absorber infiltrates the 
semiconductor’s layers creating a semiconductor-perovskite 
interface. Once the light is absorbed from the perovskite, the 
generated electrons are injected to the n-type semiconductor 
from where they are extracted and the holes are transferred to 
the p-type semiconductor [10], [11]. 

 

 

 

Fig. 1 Schematic figure of (a) planar (thin-film) and (b) mesoscopic 
(sensitized) PSCs [12] 

 
In this work, we demonstrate the results of CH3NH3PbI3-

xClx mixed halide organic-inorganic mesoscopic PSCs where 
the mesoporous layer is a combination of semiconductors, 
particularly TiO2 and In2O3. The combination of two (or more) 
different semiconductors can facilitate the electron transfer 
from the second semiconductor (In2O3) to the first one (TiO2), 
provided that the conduction band edge of the second 
semiconductor is higher than the conduction band edge of the 
first semiconductor (Fig. 2) [13], [14]. Composite 
semiconductors have also been used in dye-sensitized solar 
cell (DSSC), which is another type of third generation 
photovoltaics, as they suppress the recombination processes 
and accelerate the electron transport, leading to higher charge 
collection efficiency [15], [16]. The structure that was used for 
the reference PSCs, without the additional step of the surface 
treatment of the mesoporous TiO2 layer, was FTO/compact-
TiO2/mesoporous-TiO2/CH3NH3PbI3-xClx/P3HT/Au. For the 
PSCs with the capping layer of In2O3 the structure that was 
employed was FTO/compact-TiO2/mesoporous-TiO2/In2O3/ 
CH3NH3PbI3-xClx/P3HT/Au. These cells are compared against 
each other morphologically and electrically and the results are 
presented and discussed in the following paragraphs. 
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Fig. 2 Band gaps and band positions of the n-type semiconductors 
used for the mesoporous bilayer 

II. EXPERIMENTAL 

A. Materials 

Titanium diisopropoxide bis(acetylacetonate) (75wt% in 
isopropanol, Aldrich), Titanium(IV) butoxide (97%, Aldrich), 
acetic acid, Pluronic P123 (5.800 MW, Aldrich), Indium(III) 
acetylacetonate (Aldrich), Triton X-100 (646.86 MW, Fisher 
Scientific), Hexamethylenetetramine (HMT), Hydroiodic acid, 
Anhydrous dimethylformamide (DMF), Pb(II) chloride (Acros 
organics), Chlorobenzene, Regioregular poly(3-
hexylthiophene-2,5-diyl) (P3HT, 95.5%, 94.000 MW, Ossila), 
Lithium Bis(trifluoromethane)sulfonimidate (Li-TFSI, 
99.95%, Aldrich), 4-tert butylpyridine (4-TBP, 96% Aldrich) 
and all solvents were used as received. Gold wire was 
sublimated to form the cathode. 

B. PSCs Fabrication 

All the fabrication processes were performed under ambient 
conditions. For fabricating the PSCs, fluorine-doped tin oxide 
(FTO) conductive substrates with a sheet resistance of 8 Ohm/ 
square (Pilkington) were used, where a part of the conductive 
substrate was patterned by chemical etching with zinc powder 
and HCl aqueous solution. After the etching the conductive 
glasses were thoroughly cleaned with detergent solution and 
acetone in an ultrasonic bath and dried under nitrogen stream. 
A TiO2 thin compact layer (c-TiO2) was deposited on the FTO 
substrates by spin coating (2000 rpm, 10 s) using a titanium 
diisopropoxide bis(acetylacetonate) solution in isopropanol at 
a volumetric ratio of 1:9. The films were heated up to 500 oC 
for 10 min. Then six layers of porous TiO2 solution were 
deposited by spin coating at 1200 rpm for 20 s. After each 
layer the films were calcined at 500 oC for 10 min. For the 
porous TiO2 solution, 0.23 M Titanium(IV) butoxide, 0.4 ml 
acetic acid and 0.5 g Pluronic P123 were diluted in 4 ml 
isopropanol. Afterwards, a layer of In2O3 precursor solution 
was deposited on the prepared mesoporous TiO2 films by spin 
coating at 3000, 4000 and 5000 rpm for 10 s, altering the 
layer’s thickness. The solution was prepared by mixing 21 mg 
In(acac)3, 7 mg HMT and 0.1 g Triton X-100 in 1 ml ethanol. 
For comparison, we prepared films with and without the In2O3 

layer. 
For methylammonium iodide (CH3NH3I) synthesis, 12 ml 

methylamine (33% in ethanol) and 5 ml HI (57% in water, 
Aldrich) were added in 20 ml ethanol in a 50 ml round-
bottomed flask at 0 °C and reacted after 2 h. The solution was 
placed in a rotary evaporator to remove the excessive water 
and ethanol, resulting in a yellowish crystallized 
methylammonium iodide powder. Recrystallization of 
CH3NH3I was obtained after several washes with anhydrous 
diethyl ether until white powder was formed. Then, a 40 wt% 
precursor perovskite solution was formed by diluting 
rmethylammonium iodide and Pb(II) chloride in anhydrous 
DMF in a molar ratio 3:1. The porous TiO2 films were 
deposited with perovskite solution by spin coating at 2000 rpm 
for 45 s. The prepared films were dried on a hot plate at 100 
°C for 30 min under ambient conditions. Poly-3-
hexylthiophene (94.000 g/mol) was diluted in chlorobenzene 
(15 mg/ml), dissolving 25 mM Lithium 
bis(trifluoromethanesulfonyl) imide and 76 mM 4-TBP as 
additives in order to improve the electrical characteristics. 
Two layers of P3HT were deposited on the films by spin 
coating at 1200 rpm for 10 s. After each layer the films were 
dried on a hot plate at 60 oC for 5 min in order to evaporate 
chlorobenzene [16]. Finally, all the samples were placed 
inside a high vacuum chamber (10-6 Torr) to sublimate non-
corrosive gold to form the back contacts. 

C. Characterization 

The films’ morphology, before applying the perovskite 
film, was examined using a Field Emission Scanning Electron 
Microscopy (FE-SEM, FEI InspectTM F50) to determine 
whether the additional In2O3 layer alters the surface’s 
structure. Current density-voltage (J-V) curves were obtained 
using a solar simulator Solar Light (16S-300) equipped with a 
Xenon lamp (measured at 100 mW/cm2 with a Newport power 
meter, Model 843-R) and a Keithley 2601A source meter. The 
time delay between the data points in the J-V characteristic 
curves was set to 50 ms to ensure that no open-circuit voltage 
drop would occur [17]. 

III. RESULTS AND DISCUSSION 

The top view images from the FE-SEM microscopy 
presented in Fig. 3 show no discrete morphology differences. 
Particularly, no apparent alterations were observed to the 
nanoparticles’ size or the film’s formation upon the deposition 
of the additional layer of In2O3. The films are highly porous, 
exhibiting large agglomerated clusters which can facilitate the 
perovskite solution infiltration. 

Indium oxide was successfully combined with titanium 
dioxide and used as photoanode in PSCs. The current density 
– voltage (J-V) characteristic curves are presented in Fig. 4. It 
is obvious that the PSCs with the combined oxides TiO2-In2O3 
exhibit higher efficiencies than the cells with pure TiO2 
photoanode. Specifically, the highest efficiency (11.20%) is 
exhibited for the case of TiO2-In2O3 photoanode where the 
In2O3 layer was deposited by spin coating in 3000 rpm, which 
corresponds to a 23% increase of the efficiency compared with 
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pure TiO2 photoanode. Generally, In2O3 layer acts as a barrier 
layer that suppresses the electron – hole pair recombination 
rate resulting mainly in an increase of the current density, 
whereas the voltage remains nearly constant. Thus the overall 
performance is improved. The measured and calculated values 
of the short circuit current density (JSC), open-circuit voltage 
(VOC), maximum power (PMAX), fill factor (FF) and power 
conversion efficiency (n%) for all samples are summarized in 
Table I. 

 

 

Fig. 3 FE-SEM images (a) of mesoporous TiO2 film and (b) of 
mesoporous TiO2 and In2O3 bilayer 

IV. CONCLUSION 

This work presents the fabrication and characterization of 
hybrid organic-inorganic mixed halide PSCs under ambient 
condition. mp-PSCs with plain TiO2 mesoporous layer are 
compared against cells having a capping In2O3 layer over the 
mp-TiO2 layer. Optimized electrical parameters were 
measured for the solar cells with the composite TiO2-In2O3 
mesoporous layer, which was ascribed to the fact that the top 

In2O3 layer facilitates the electron transfer and suppresses the 
recombination rate leading to higher power conversion 
efficiencies. The highest efficiency that was achieved was 
11.2% which is a satisfactory performance for mp-PSCs with 
a simple structure fabricated without having controlled 
conditions or using expensive equipment, such as glove box. 
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Fig. 4 Electrical characteristics of the PSCs with TiO2 and TiO2-
In2O3 photoanodes, with different deposition speeds of the In2O3 

layer 
 

TABLE I 
ELECTRICAL CHARACTERISTICS OF PSCS 

Cell 
JSC 

(mA/cm2) 
VOC 
(V) 

PMAX 
(mW) 

FF n (%) 

TiO2 21.59 0.853 0.794 0.55 9.13 
TiO2-In2O3 
(3000rpm) 

23.86 0.863 0.887 0.60 11.20 

TiO2-In2O3 
(4000rpm) 

21.85 0.843 0.876 0.61 10.21 

TiO2-In2O3 
(5000rpm) 

19.97 0.841 0.596 0.65 9.85 
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