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Abstract—We propose a fast and robust hierarchical face 
detection system which finds and localizes face images with a 
cascade of classifiers. Three modules contribute to the efficiency of 
our detector. First, heterogeneous feature descriptors are exploited to 
enrich feature types and feature numbers for face representation. 
Second, a PSO-Adaboost algorithm is proposed to efficiently select 
discriminative features from a large pool of available features and 
reinforce them into the final ensemble classifier. Compared with the 
standard exhaustive Adaboost for feature selection, the new PSO-
Adaboost algorithm reduces the training time up to 20 times. Finally, 
a three-stage hierarchical classifier framework is developed for rapid 
background removal. In particular, candidate face regions are 
detected more quickly by using a large size window in the first stage. 
Nonlinear SVM classifiers are used instead of decision stump 
functions in the last stage to remove those remaining complex non-
face patterns that can not be rejected in the previous two stages. 
Experimental results show our detector achieves superior 
performance on the CMU+MIT frontal face dataset. 
 
Keywords—Adaboost, Face detection, Feature selection, PSO 

I. INTRODUCTION 

UMAN faces are difficult to model as it is necessary to 
account for all possible appearance variations caused by 
changes in scale, location, orientation (in-plane rotation), 

pose (out-of-plane rotation), facial expression, lighting 
conditions and partial occlusions, etc. In spite of all these 
difficulties, tremendous progress has been made in the latest 
several decades and many systems have shown impressive 
performance [1]-[12]. In particular, the remarkable 
breakthrough was achieved by Viola and Jones. In [2], they 
developed the first real-time face detection system by building 
a cascade of simple classifiers, each of which is based only on 
the Haar-like features over fixed image regions. The classifiers 
themselves are simple threshold functions, but their ensemble 
allows to learn complex appearance variations. The amazing 
real-time speed and high detection accuracy of Viola and 
Jones’ face detector can be attributed to three factors: the 
integral image representation, the cascade framework, and the 
use of Adaboost to train cascade nodes. The integral image 
representation enables the calculation of Haar-like features 
extremely fast. The cascade framework allows non-face 
background patches to be filtered away quickly. Adaboost 
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algorithm selects Haar-like features and combines them into an 
ensemble classifier in a cascade node. Currently, many face 
detection systems follow Viola and Jones’ cascade-based 
framework which computes a great number of weak classifiers 
formed by Haar-like features at all possible positions and 
scales in a sliding window and then boosts these weak 
classifiers into a strong classifier to predict whether or not a 
face is present in the window. However, training such a 
boosting ensemble classifier is rather lengthy and 
computationally expensive. We argue this training inefficiency 
of the boosting ensemble classifier comes from two aspects: 
(1). poor discriminability and classification performance due 
to the weak classifier formed by Haar-like features and simple 
decision stump function; (2). the exhaustive search method 
used in Adaboost algorithm. Haar-like features are too simple 
to characterize face patterns in real-world situations. Hence the 
ensemble classifier derived from Haar-like features is 
insufficient to achieve accurate face detection. Such ‘too 
weak’ classifiers do not contribute to improving detector’s 
generalization performance, so that more feature types as well 
as unreasonably large number of weak classifiers have to be 
exploited to boost the performance of the ensemble classifier. 
However, expansion of feature numbers and types 
automatically increases the size of feature set and storage 
memory. Since feature space enlarges dramatically, obviously, 
exhaustive search mechanism used in the standard Adaboost 
algorithm can not effectively manage the search process. This 
in turn makes the training time longer, which is by far one of 
the main reasons that stop many methods from exploring other 
feature types. 

To cope with the poor discriminability of Haar-like features 
and the lengthy training process due to the exhaustive 
Adaboost method, in this paper, we propose an efficient 
hierarchical face detection system which finds and localizes 
face images with a cascade of classifiers formed with a group 
of heterogeneous feature descriptors. To further speed up the 
training and detection process of our system, we also propose 
to integrate Particle Swarm Optimization (PSO) algorithm into 
the Adaboost framework, replacing the exhaustive search used 
in original Adaboost for efficient feature selection. As shown 
by the result in Section V, this PSO-Adaboost method not only 
speeds up the training process but also improves generalization 
ability of the face detector.  

II. THE PROPOSED HIERARCHICAL FACE DETECTOR 

Considering the task-specific characteristics for face 
detection, it is sensible to apply a hierarchical face classifier, 
in which simple and fast classifiers remove large parts of the  
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Fig. 1 Framework of the proposed hierarchical Hetero-PSO-Adaboost-SVM face detector 

background in the beginning and intermediate stages of the 
hierarchy and more accurate but slower classifiers perform the 
final detection in the last level. Based on this observation, we 
propose a fast hierarchical face detector (i.e. the Hetero-PSO-
Adaboost-SVM face detector) that boosts a set of weak 
classifiers formed with heterogeneous feature descriptors 
including Generalized Haar-like (GH) descriptor, Multi-Block 
Local Binary Patterns (MB-LBP) descriptor and Speeded Up 
Robust Feature (SURF) descriptor. In such a hierarchical 
architecture where the complexity of classifiers increases as 
the stage goes further, only a small percentage of non-face 
patterns that look similar to face patterns require an accurate 
ensemble classifier to avoid false classification. By 
propagating those patterns that were not classified as 
background, we can quickly decrease the amount of data to 
process. To further lessen the training burden of the final face 
classifier, a feature selection scheme using PSO algorithm 
searches the entire feature space and filters out a minimum 
number of discriminative features that give the highest 
classification rate, and then Adaboost algorithm is carried out 
to boost these carefully selected weak classifiers (features) into 
a strong classifier in each hierarchical layer. 

Fig.1 depicts framework of the proposed Hetero-PSO-
Adaboost-SVM face detector. More specially, the whole 
system consists of three stages that classify and localize all 
face regions in an input image using a 24×24 pixel window. 
To detect faces of different sizes and positions, we apply the 
detector at every position and scale in the input image with a 
scale factor of 1.25. The first stage is a cascade of GH feature-
based classifiers which are used to estimate face candidate 
positions approximately in a 36×36 pixel window with a 
moving step of 12 pixels. If a face pattern is found inside a 
36×36 pixel window, a total of 144 (i.e. 12×12) possible face 
positions are collected and passed to the next stage. The 
second stage is a cascade of 24×24 pixel window-based 
classifiers constructed from MB-LBP features to explore the 
accurate face candidate locations retrieved from the previous 
stage. The main purpose of applying these two hierarchical 
cascade classifiers is trying to filter out as many as simple non-
face (background) patterns quickly before passing the 
remaining complex patterns to the final stage. Although the 
cascade of 24×24 classifiers rejects non-face patterns rapidly, 
it still causes a great deal of computation due to the large 

number of 24×24 patterns that it needs to process. For this 
reason, in the first stage, a cascade of 36×36 classifiers is 
added to decrease the number of analyzed patterns. To this 
end, this stage is trained specially to make the classifiers 
invariant to small face translations. These classifiers can detect 
faces that are off-center by up to six pixels in vertical and/or 
horizontal directions. The 36×36 pixel window is chosen in 
accordance with the observation in [4] that the classifier can be 
trained to be invariant to translation by up to 25% of the 
original window size. With this flexible classifier, the moving 
step size can be increased by up to 12 pixels to dramatically 
reduce the number of analyzed patterns. This simple to 
complex matching idea is inspired from Viola and Jones’ 
approach [2], in which Haar wavelet features form the weak 
classifiers and the cascade Adaboost classifiers enable 
extremely fast computation. Whereas, our system builds the 
ensemble stage classifier with a group of specially selected 
heterogeneous feature descriptors (i.e. GH descriptor and MB-
LBP descriptor) based on a PSO-Adaboost feature selection 
method, which guarantees a fast derivation of robust and 
effective stage classifiers. In the last stage, a cascade of 
complex and powerful nonlinear SVM classifiers is utilized to 
carefully remove those remaining complex non-face patterns 
which look so similar to face patterns that can not be rejected 
during the previous two stages. In particular, radial basis 
function (RBF) is used as the kernel function in these SVM 
classifiers. For each detected 24×24 region yielded from the 
second stage classifiers, discriminative SURF descriptors at 
fixed points in the locations of the nodes on an 8×8 regular 
grid, overlapping the region, are evaluated for these nonlinear 
RBF kernel-based SVM classifiers in the last stage. 

III. FACE REPRESENTATION WITH HETEROGENEOUS FEATURES 

Three types of heterogeneous feature descriptors with 
increasing discriminability, i.e. GH descriptor, MB-LBP 
descriptor and SURF descriptor, are used in the proposed 
detector to represent face patterns. In particular, GH features 
are suitable for catching edge structures, whereas MB-LBP 
features are texture-based descriptors and SURF features are 
interest point-based high dimensional descriptors on gradient 
orientations, so these complementary feature descriptors, with 
varying distinctiveness and complexity, characterize a face 
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Fig. 2 Generalized Haar-like features used in our face detector. (1)-(4) Original Haar-like features used by Viola and Jones, (5)-(9) Extended 
Haar-like features proposed by Pham and Cham [11] 

pattern from different aspects. Furthermore, it is worth noting 
that all these three types of descriptors can be efficiently 
evaluated via integral images. 

In [2], Viola and Jones proposed a basic set of four types of 
Haar-like features for detecting frontal faces. In our approach, 
we adopt a total of 9 generalized Haar-like features, including 
a group of extended Haar-like features proposed in [11] and 
four basic Haar-like features, to increase the detector’s 
performance. Fig.2 compares the four basic Haar-like features 
applied by Viola and Jones as well as the generalized Haar-
like features used in our approach. 

The basic idea of MB-LBP operator [12] is originated from 
the Local Binary Patterns (LBP) descriptor [13]. Formally, the 
MB-LBP operator is defined by comparing the central 
rectangle’s average intensity with those of its neighboring 
rectangles in a 3×3 neighborhood. Fig.3 demonstrates the 
evaluation of MB-LBP operator, which results an output of 
MB-LBP value (00011110). Interested readers may refer to 
[12] for more details on MB-LBP. MB-LBP is more 
discriminative since it can capture diverse image structures in 
a large scale, which may be the dominant features of an image. 
Another advantage of MB-LBP is that the number of 
comprehensive set of MB-LBP features is much smaller than 
Haar-like features, which makes the implementation of feature 
selection significantly easy. Similar to the LBP descriptor, by 
using circular neighborhoods and bilinearly interpolating the 
pixel values, MB-LBP operator can also be extended to MB-
LBPP,R with local neighborhood of P equally-spaced sampling 
points on a circle of radius of R to capture significant features 
with at different sizes and scales. 
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Fig. 3 Evaluation of the Multi-block LBP (MB-LBP) feature 

SURF [14-15] is a robust scale-invariant and rotation-
invariant interest point detector and descriptor. Conceptually 
similar to the SIFT descriptor, SURF descriptor also focuses 
on the spatial distribution of gradient information within the 
interest point neighborhood, where interest points itself can be 
localized by interest point detection approaches or in a regular 
grid. In this paper, both the standard 64-dimensional version 
and the extended 128-dimensional version of SURF descriptor 
with the 4×4 sub-region division solution are used to provide 
the best performance for face detection.  

IV. FEATURE SELECTION AND LEARNING USING PSO-
ADABOOST 

Recall that in most face detection methods a huge quantity 
of Haar-like features are built as weak classifiers, among 
which a set of the most discriminative weak classifiers are 
selected via Adaboost algorithm to derive a final strong 
classifier that can accurately distinguish face patterns from 
those complicated non-face patterns. However, the exhaustive 
search mechanism used in Adaboost algorithm significantly 
increases the selection complexity and prolongs the selection 
process. In addition, the weak learning ability of the simple 
decision stump classifier also worsens the efficiency of these 
face detection methods. Taking the above two factors into 
account, two improvements are proposed in our face detector 
to lessen the computational burden of feature selection and 
speed up the feature selection. First, powerful nonlinear SVM 
classifiers trained on discriminative SURF descriptors take the 
role of decision stump functions to strengthen the feature 
learning ability as well as the classification capability for weak 
classifiers at the last stage of the hierarchical face detector. 
Second, PSO technique is integrated with Adaboost algorithm, 
so that it can efficiently search the whole feature space and 
select a minimum number of optimal feature sets to shorten the 
training processing. 

A. Adaboost for Feature Selection 

Adaboost [16] is an ensemble learning method that trains 
multiple weak classifiers and strengthens them into a more 
powerful strong classifier. In the iterations of Adaboost, the 
weak classifier that minimizes classification error on a set of 
training examples is chosen and added into the final ensemble 
classifier. Therefore, the learned ensemble classifier 
effectively obtains a perfect classification power for given 
training samples. More specially, given a set of training 
examples {(xn, yn), yn= {-1,1}}(n=1,⋯, N), weighted by ωn 
uniformly, Adaboost algorithm iterates over a number of T 
rounds. In every round t, and for each feature fj, a weak 
classifier hj(x) that consists of the feature, a decision threshold 
θj = 0.5(M-j + M+j) where M-j and M+j are the mean value of 
feature responses on negative and positive examples 
respectively, and a parity parameter pj indicating the direction 
of the inequality sign, is trained to assist the classification of 
positive patterns from negative patterns. 

.  
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defined as the total weights of the misclassified examples. At 
the end of each round, weights of the training examples 
misclassified by ht() are increased, so that the learning 
algorithm will focus more on these misclassified examples in 
the next round. The classifier hj() with the minimum 
classification error at round t is taken to be the winner among 
all available classifiers. The final strong classifier H(x) at the 
end of T rounds is constructed as a linear combination of the 
weighted weak classifiers, where each classifier is weighted by 
a weight parameter proportional to its error rate. 

B. Particle Swarm Optimization (PSO) Algorithm 

PSO [17] is a kind of population-based stochastic 
optimization technique that simulates the social behavior of 
bird flocking or fish schooling to describe an evolving system. 
In PSO, each candidate solution to the problem at hand is 
called a particle, and the population consists of all potential 
solutions which create flocks of birds. Each particle has a 
fitness value that indicates the goodness of the solution 
represented by the particle. The swarm is initialized so that 
these particles are randomly distributed over the search space 
and then fly freely across the multi-dimensional search space. 
During the flying, each particle updates its velocity and 
position states based on two best values, i.e. the personal best 
position it experienced, and the global best position the entire 
population experienced. The updating policy guided by the 
fitness function drives the particle swarm towards the region 
with higher objective value iteratively, and finally all particles 
gather around the point with the highest objective value that 
produces the optimum solution. In particular, if the number of 
particles in the population is I, for the ith particle, let 

1 2, ,...,
T

l l l

i i iDx x x =  
l

iX and 1 2, ,...,
T

l l l

i i iDv v v =  
l

iV denote its position 

and velocity vector in a D-dimensional solution space at the lth 

iteration, respectively. Let 1 2, ,...,
T

s s s s

Dp p p =  P and 

1 2, ,...,
T

g g g g

Dp p p =  P denote the personal best point and the 

global best point respectively. In PSO, during each iteration, 
with the knowledge of Ps and Pg, each particle updates its 
velocity and position according to the individual (local) and 
social (global) information, as shown in (2) and (3). 

 1 ( ) ( )l l s l g l

i i s s i i g g i iw c r c r
+ = + − + −V V P X P X  (2) 

 1 1l l l

i i i

+ += +X X V  (3) 

where i = 1, 2,…I; w is the inertia weight that controls the 
impact of the past velocity over the current velocity; rs and rg 
are random variables within the range of [0,1]; cs and cg are 
positive weighting factors that adjust the influence of personal 
and global best solutions, respectively. Equation (2) and (3) 
describe the flying trajectory of a population of particles. As 
shown in (2), since particles fly through the search space with 
velocities dynamically adjusted according to their and the 
global historical behaviors, thus particles have a tendency to 
fly towards better and better search area. Finally, the global 
best particle (with its position state Pg) found so far is taken as 
the optimal solution to the problem. 

C. PSO-Adaboost for Feature Selection 

To tackle the high training complexity due to exhaustive 
search in the original Adaboost algorithm, we apply the PSO 
algorithm for all possible feature location, size and type 
combinations to find a set of discriminative features. Then 
these features are combined with Adaboost algorithm to 
construct an effective ensemble classifier. We call this feature 
selection algorithm as PSO-Adaboost based feature selection. 

 
Algorithm Pseudocode of PSO-Adaboost algorithm for 

feature selection  
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Optimization function PSO() for PSO-Adaboost algorithm 

Input arguments { } { }{ }11
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Set cs = cg = 2, wmin = 0.2, w = wmax = 1.2 
Set random parameters: rs , rg ∈[0,1] 
Set state vector: l D

i
R∈X and l D

i
R∈V with random value 
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                   using weights ωn 
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            (3). Update state of particles using (2) and (3) 
        end for 

        Update momentum: max max min( )
l

w w w w
L

← − −  
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end for 

Return { }()(),
gg hh ε  

 
Fig. 4 Pseudocode of the proposed PSO-Adaboost algorithm for 

feature selection 
 
According to this paradigm, the weak classifier now consists 

of a feature parameter set (type, xs, ys, width, height, 
sampling_points, radius), where type denotes the feature 
descriptor type which takes value in 1~12 (1~9 for GH, 10 for 
MB-LBP, 11 and 12 for SURF-64 and SURF-128 features, 
respectively); (xs, ys) denotes the feature position in the 
detection window; (width, height) denotes the size of the GH 
features in 36×36 cascade classifiers in the first stage; 
(sampling_points, radius) denote the number of neighboring 
sample points (P) and the radius of sample circle (R) for MB-
LBPP,R features in 24×24 cascade classifiers in the second 
stage. All these seven parameters are integers, and their values 
are constrained by the number of feature types or the 
dimension of the detection window. Hence, the whole problem 
is turned to a constrained optimization problem.  

In our PSO-Adaboost based feature selection method, 
considering the position vector of a particle as X = [type, xs, ys, 
width, height, sampling_points, radius]T, the best feature 
descriptors are searched over the entire feature space using the 
PSO algorithm, according to the fitness function defined in (4). 
The fitness function is to minimize the weighted classification 
error rate �, which takes the same formula as the original 
Adaboost algorithm. 

 ,
1

0  ( )
 ,   

1      

N
t n n

t n n n

n

h y
fitness b where b

otherwise
ε ω

=

=
= = = 


∑

X
 (4) 

Fig.4 shows the pseudocode of PSO-Adaboost algorithm for 
feature selection. Following the above procedure, the Haar 
features, MB-LBP features and SURF features with high 
accuracy are selected efficiently in our face detector. 

V. EXPERIMENTAL RESULTS 

For training the face detector, a set of 10000 frontal face 
images from various sources were collected. These face 
images cover ±15° in-plane rotation and ±45° out-of-plane 
rotation from the exact upright face.  All face images were 
scaled and aligned to a base resolution of 24×24 pixels, then 
histogram equalization was performed to decrease the 
variation caused by illumination changes. Another set of 
20000 images containing no faces were collected from various 
subjects to form the non-face dataset. For each aligned face 
example, four synthesized face examples were generated 
considering the following random transformations: mirroring, 
random shifting to ±1 pixel, in-plane rotation between ±180° 
and scaling within 20% variations. Finally, we got a total 
number of 40000 face training examples. Face patterns for 
training the 36×36 classifiers were generated by selecting 
36×36 windows that contain the 24×24 face window of the 
input image. To train the cascade of 36×36 and 24×24 
Adaboost classifiers used in the first two stages, all face 
images were used for all layers and all non-face examples were 
used to train the first layer classifier in the cascade structure. 

For the subsequent layer classifiers, non-face training set was 
updated in such a way that the non-face examples which were 
correctly classified by the current stage classifier were 
removed from the training set, whereas false positive examples 
produced by the stage classifier were supplemented into the 
training set. To keep a balance between complexity and 
classifier’s accuracy, the maximum number of layers for 
36×36 classifiers in the first stage was set to three, since using 
more layers would degrade the overall detection rate 
dramatically. For the SVM classifiers used in the last stage, 
10000 face patterns separated from the training set together 
with 10000 non-face patterns were used to learn the best 
classification boundary for face and non-face patterns. SVM 
classifiers were trained using a RBF kernel function K(x,y) = 
exp(-γ||x-y||2) with the width parameter γ = 0.0625 and the 
penalty parameter C = 8. These SVM parameters were decided 
in a 10-fold cross-validation manner.  

Using the above experimental setting and applying the PSO-
Adaboost based feature selection scheme, we derive the final 
structure of the proposed Hetero-PSO-Adaboost-SVM face 
detector. In particular, in the first stage, the cascaded 36×36 
classifiers contains three layers among which a total of 110 
GH features are selected via the PSO-Adaboost method. The 
second stage includes 6 layers with a total of 440 selected MB-
LBP features from the 36×36 face candidate windows yielded 
from the previous stage. The final stage is a cascade of three-
layer RBF SVM classifiers that captures 64 SURF features 
from the remaining 24×24 potential face regions. As a 
comparison, we also trained a full cascade of Haar-Exhaustive-
Adaboost-DS classifier that was built upon homogeneous Haar 
features and decision stump functions using exhaustive 
Adaboost algorithm. Similar to Viola and Jones’ approach [2], 
this Haar-Exhaustive-Adaboost-DS classifier came with a 
cascade structure of 30 layers with 6450 features. Apparently, 
our system uses much fewer distinctive features (only 614 
features in total), so it is more efficient and can reduce both 
training and detection time. 

We tested detection performance of our Hetero-PSO-
Adaboost-SVM face detector on the CMU+MIT frontal face 
dataset [4]. This dataset consists of 130 images containing 507 
frontal faces with various conditions. Fig.5 plots the Receiver 
Operating Characteristics (ROC) curves of our method as well 
as other popular state-of-the-art face detection algorithms 
including Féraud et al. [5], Garcia and Delakis [6], Huang et 
al. [7], Li and Zhang [8], Yan et al. [9], Schneiderman [10] 
and Viola and Jones [3], in terms of the number of false 
positives with respect to the detection rate. As shown in Fig.5, 
our detector achieves a detection rate of 96.50% at ten false 
positives. As far as we know, this is the best detection result 
for ten false positives on the CMU+MIT frontal face dataset. 
Obviously, compared with other algorithms, detection rate of 
our method is also improved dramatically, especially for cases 
at low false alarms. Fig.6 gives some detection results from 
our face detector. 

Regarding the training time, thanks to the PSO-Adaboost 
algorithm, we significantly improve the efficiency for feature 
selection. Training a final hierarchical Hetero-PSO-Adaboost-
SVM detector requires approximately 49900 seconds on a 
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platform with PIV 3.0 GHz CPU and 2GB RAM, which is 
about 20 times faster than training using original exhaustive 
Adaboost algorithm. To detect faces in a 320×240 pixel 
image, our detector spends an average time of 70ms. 

 
Fig. 5 ROC curves for all detection algorithms on the CMU+MIT 

frontal face dataset 

 

Fig. 6 Detection examples using our detector on test images from the 
CMU+MIT frontal face dataset 

VI. CONCLUSION 

We propose an efficient and robust face detection system 
based on heterogeneous feature representation and feature 
selection using PSO-Adaboost. To quickly remove large 
background parts in an image, we apply a simple to complex 
matching strategy and implement it with a three-stage 
hierarchical cascade classifiers system, built on heterogeneous 
feature descriptors with increasing discriminability and 
complexity. In particular, all possible location of face patterns 
are first approximately detected using a large size sliding 
window. A cascade of 24×24 pixel classifiers and nonlinear 
RBF SVM classifiers are then used to further remove non-face 
patterns and precisely localize face regions in the later two 
stages. In our system, three types of heterogeneous descriptors, 
i.e. generalize Haar-like descriptor, MB-LBP descriptor and 
SURF descriptor form the feature pool, from which an 

efficient PSO-based Adaboost algorithm is employed to select 
a minimum set of distinctive features for cascade classifiers at 
each stage. Combining the merits of face representation with 
heterogeneous descriptors, PSO-Adaboost based feature 
selection and nonlinear SVM weak classifier makes the 
proposed face detector achieve superior detection accuracy 
while maintaining a low training and detection complexity. 
Experimental results verified the robustness and efficiency of 
our system. 
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