
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1121

Abstract—Block replacement algorithms to increase hit ratio

have been extensively used in cache memory management. Among
basic replacement schemes, LRU and FIFO have been shown to be
effective replacement algorithms in terms of hit rates. In this paper,
we introduce a flexible stack-based circuit which can be employed in
hardware implementation of both LRU and FIFO policies. We
propose a simple and efficient architecture such that stack-based
replacement algorithms can be implemented without the drawbacks
of the traditional architectures. The stack is modular and hence, a set
of stack rows can be cascaded depending on the number of blocks in
each cache set. Our circuit can be implemented in conjunction with
the cache controller and static/dynamic memories to form a cache
system. Experimental results exhibit that our proposed circuit
provides an average value of 26% improvement in storage bits and its
maximum operating frequency is increased by a factor of two

Keywords—Cache Memory, Replacement Algorithms, Least
Recently Used Algorithm, First In First Out Algorithm.

I. INTRODUCTION
N modern computer systems the efficiency of the memory
hierarchy is one of the most crucial issues. To obtain a

high-performance memory system, caching is the best
direction in terms of cost and effectiveness. The performance
of the cache memories to compensate the speed gap between
processors and main memory is determined by the access time
and miss rates. Researches have proposed various cache
memory replacement schemes to enhance cache performance
and reduce its costs. [1-9]

The most cost-effective organization of cache memory
called set associative cache holds several blocks per set. This
organization is generally employed by cache designers as it
offers a reasonable balance between hit ratio and
implementation costs. When a cache miss occurs, the cache
controller decides which block must be replaced. To make a
replacement decision, designers exploit three basic
replacement algorithms, Least Recently Used (LRU), First In

Manuscript received August 30, 2006. This work was supported in part by

the Islamic Azad University. This research was done in the Department of
Computer Engineering at the Islamic Azad University, Damavand Branch.

H. Ghasemzadeh, H. Shojaei and M. R. Kakoee are with the Department
of Computer Engineering, Damavand Branch, Islamic Azad University,
Damavand, Tehran, Iran (e-mail: h.ghasemzadeh@ece.ut.ac.ir and {shojai ,
kakoee}@cad.ece.ut.ac.ir).

S. Mazrouee was with the Islamic Azad University. She is now with the
Oil Pension Fund Investment Co., Tehran, Iran (e-mail:
s.mazrouee@gmail.com).

First Out (FIFO) and Random policies, or employ some
variations of these conventional schemes. Random
replacement algorithm could be easily implemented using a
Pseudo Random Generator circuit. Most efforts have been
made to introduce efficient architectures of the true LRU and
FIFO algorithms.

This paper presents a flexible architecture which can be
used for implementation of both LRU and FIFO algorithms.
Aforementioned architecture is an extended version of the
Pseudo-FIFO which is previously introduced in [10]. Our
architecture needs just some minor changes to move from one
algorithm to another because we implement both control
circuits in a stack structure. In the LRU algorithm, each cache
set is treated as a stack and a reference to a particular block
moves that block to the top of the stack. The least recently
used block is always at the bottom and on a miss, new data
will be loaded into this block and moved to the top of the
stack. A block is also moved to the top on a cache hit because
it is now the most recently used block. [14]

The rest of this paper is organized as follows. In Section 2,
we present some related works. The details of our circuits are
given in Section 3. In Section 4, we present the performance
evaluation of proposed architecture, and finally we conclude
the paper in Section 5.

II. RELATED WORK
Cache memory replacement policies to decrease the miss

rates have been widely studied in the past. Many replacement
algorithms have been proposed and some of them such as the
LRU and FIFO are extensively adopted in caches. Authors in
[11] presented a defect-tolerant control circuit for a set
associative cache memory. This circuit keeps stack ordering
necessary for implementation of the LRU replacement
algorithm in a 4-way set associative cache. This method that
requires n(n-1)/2 bits of memory per set, called Reference
Matrix as it revolves around the concept of a reference matrix.
This architecture takes advantage of reasonable bits, but it has
still low clock rate for practical purposes. The LRU scheme
produces good results in terms of low miss rates, but there are
some crucial design issues to exploit this algorithm in CPU
caches. The most important point is that this policy can
quickly consume plenty of memory elements as the
associativity grows. Researchers in [1] introduced an idealized
circuit of the LRU called Basic Architecture. The drawback
with this architecture is that for higher associativities the
number of bits grows significantly. The problems with

Hardware Implementation of Stack-Based
Replacement Algorithms

Hassan Ghasemzadeh, Sepideh Mazrouee, Hassan Goldani Moghaddam,

 Hamid Shojaei, and Mohammad Reza Kakoee

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1122

implementation of LRU led cache designers to employ an
approximation of this scheme instead of its full structure.
Authors in [12] designed a chip to implement LRU
approximation scheme. In [13], authors presented a systolic
LRU processor which requires n)(3nlogn

2 + storage bits per set.
Many new Intel processors like Pentium use a binary tree
structure called Pseudo-LRU for implementing an
approximation of the LRU in a 4-way set associative cache.
Instead of 5 bits in Basic Architecture, Pseudo-LRU needs
only 3 bits of memory elements per cache line. In [14],
authors proposed an approximation to the LRU replacement
scheme which has been implemented for video compression
purposes. Also, authors in [15] reported an approximation of
the LRU called Quasi-LRU in a 4-way set associative, 1MB
and dual ported data cache memory. This circuit is the same
Pseudo-LRU used by Intel that was pointed to before. We
note that these architectures are very complex so that they
could not be implemented and/or cascaded withal having more
miss rates for approximation structures than true ones.

III. SYSTEM ARCHITECTURE
The original idea behind our architecture is to implement

stack-based algorithms such as the LRU and FIFO in a stack
structure. This stack contains n entries, each of which
represents a block. We recall from Section 1 that the replaced
block (actually, its address) is always stored at the bottom of
the stack. In our architecture, there are n

2nlog bits ordered in
n rows, each row consists n

2log bits, altogether form a control
stack. Fig. 1 exhibits a top level block diagram of system
architecture for a 4-way set associative cache. Each row in
stack circuit refers to corresponding block in a cache set. The
power-up state of the stack is significant since initial values
indicate stack order at the startup time. A precharge signal
which should be activated at the startup is applied to the
circuit to convey the memory elements to an initial state.

When the CPU makes a memory call and the cache receives
it, the tag field of CPU address is associatively searched in
tag-RAM. The tag-RAM has some output signals that
determine the address on which a hit occurred, or a miss
signal becomes high to indicate that the referred block is not
in the cache. Therefore, in a 4-way set associative cache, five
bits are issued due to cache controller output as the inputs to
control circuit to show the status of current accessed block.
The four first bits, match<0> thru match<3> correspond to a
row of the stack on a hit. When a miss occurs, the match
signals are high impedance and the miss is used to update the
stack.

A. LRU Control Circuit
The stack circuit is updated during each clock cycle to

maintain blocks order in corresponding cache set. In an LRU
circuit, three different situations may happen during a memory
access:

0 0

0 0

0 0

0 0

A

B

C

D

match<3>

match<2>

match<1>

match<0>

miss

LRU Address

Tag RAM

LRU Circuit

Tag field (from CPU address)
 0 1 . . . k-1

Fig. 1 Top Level Block Schematic of System Architecture

 When an access to most recently used block occurs, no
change in stack order should happen. The MRU block is
always at the top location of the stack. Therefore, on an access
to most recently used block, the stack is not needed to be
updated.

 If requested block is not found in the cache, a cache miss
has occurred. The miss signal becomes high through the tag-
RAM output. In this situation, LRU block whose address is at
the bottom is sent to the cache controller. Consequently, the
requested block is brought from main memory and copied to
appropriate space in the cache. Now, the address at the bottom
refers to the most recently accessed block. Therefore, on a
cache miss, the address at the bottom of the stack should be
moved to the top of the stack indicating most recently used
block, and the other addresses should be shifted down once in
the stack.

 If requested block is found in every place in the cache set
except the top of the stack, a hit has occurred and the stack
should be updated. In this case, the row which contains the
address of accessed block should be moved to the top and all
the upper rows will be shifted down.
In Fig. 2, we show the control circuit of the LRU replacement
scheme for a 4-way set associative cache. The circuit has n+1
inputs and n

2log outputs, where n is associativity. The outputs
indicate the block which has been used least recently. The
inputs include n lines called match and one line called miss.
The match lines are compared with different rows of the stack.
The outputs produced by one comparator show the equality of
match inputs and stack rows as the stack contains all
variations of match lines. The match inputs are equivalent to
just one row in the stack. The comparator outputs force the
enable inputs of the flip-flops to be activated.
On a hit, the rows above the row where the hit occurred must
be shifted down to update stack order. We have used cascaded
OR gates to activate load enable of the flip-flops. When the
miss input becomes high, in addition to move the bottom cells
to the top, all upper rows are transferred down. Therefore, the
miss signal activates the enable input of the last row and
propagates through the OR gates to activate the load enable of
the upper rows.

Replaced Block Address

Stack Circuit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1123

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

Address Dec.
&

Comparator

Row1<1> Row1<0>

LRU Block Address

Tansfer Line 0Tansfer Line 1

Address Dec.
&

Comparator

Address Dec.
&

Comparator

Row2<0>Row2<1>

Row3<0>Row3<1>

miss

Match{0,1,2,3} Row
0

Row
1

Row
2

Row
3

Fig. 2 LRU control circuit for a 4-way set associative cache memory

In this architecture, there are n
2log transfer lines that move

row content to the top. The row is selected through
comparator outputs and there are some nMOS switches in
each line that move stack content to the transfer lines. On a
row match, the load enables of the matched row and all upper
rows become high and the content of the matched row appears
on the transfer lines. When system clock arrives, the
transmigration is done and the stack is updated. Now, the
stack is stable, MRU block address is at the top and LRU
block address could be found at the bottom. The same
scenario occurs at the next memory access.

The memory cells are normal D-flip-flops with enable
inputs. In Fig. 2, it is apparent that the lines to En on the flip-
flops on the left are meant to continue to the adjacent flip-flop
on the right. At the power-up state, precharge signal sets flip-
flop outputs to appropriate values to form initial order of the
LRU stack. As we saw before, each LRU circuit consists of
some flip-flops and associated combinational logic circuits
which update status of the flip-flops.

B. FIFO Control Circuit
To update stack order in a FIFO structure, there are two

different situations when a memory call occurs:
 On a cache miss, the address at the bottom of the stack

refers to the first block brought to the corresponding cache set.
Therefore, the address at the bottom should be moved to the
top of the stack indicating first arrived block, and the other
addresses should be shifted down once in the stack.

 On a cache hit, the stack order should be kept as it has
been before a memory reference. Actually, on a hit, the first
arrived block dose not change.

Fig. 3 shows the control circuit of the FIFO algorithm for a
4-way set associative cache. This circuit has only 1 input
(miss signal), while it has, like LRU, n

2log outputs. The
outputs indicate the first arrived block which should be
replaced with the new block.

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

D

En Q

Miss

LRU Address
First Arrived Block

Fig. 3 FIFO control circuit for a 4-way set associative cache memory

IV. PERFORMANCE EVALUATION

A. Miss Rates Analysis
We employ trace-driven simulations with several kinds of

workloads to evaluate LRU and FIFO algorithms and compare
them with other common schemes such as Random and
Pseudo-LRU. Hence, the cache simulator is developed to
support all aforementioned replacement algorithms.
Workloads used in this trace-driven simulation include fifteen
different types of programs (dec0, fora, forf, fsxzz, lvex, lisp,
macr, memxx, mul2, mul3, pasc, ue02, spice, gcc, tex)
including more then 3,000,000 references. Both data and
instruction references are collected and used for simulation.
We used 32-byte block size in a 32 KB unified cache and
evaluated the replacement schemes in terms of miss rates. Fig.
4 demonstrates the resulting performance with different
associativity values. In this diagram, each data-point
corresponds to the average taken over all aforementioned
benchmarks.

It is shown that LRU algorithm provides average values of
13.49% and 8.46% improvement over Random and Pseudo-
LRU algorithms. Also, FIFO algorithm has an average 4.31%
performance improvement over Random algorithm. Although,
Pseudo-LRU provides a small improvement of 1.24% over
FIFO, it has more hardware complexity compared to FIFO
scheme. Therefore, there is still a considerable performance
gap between LRU/FIFO and Random/Pseudo-LRU
replacement schemes that leads us to implement new
architectures of LRU and FIFO.

B. Time Complexity Analysis
We consider operating frequency as an important

parameters in evaluating timing analysis of our architecture. A
comparison is made between Reference Matrix circuit [11,16]
and our LRU circuit in terms of operating frequency. We do
not include Basic Architecture of the LRU algorithm in this
evaluation because this architecture is indeed an idealized
structure of LRU and mainly impossible to be implemented

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1124

for practical purposes.

0

0.5

1

1.5

2

2.5

3

2 4 8 16 32

Associativity

M
is

s R
at

e
(%

)

Random FIFO LRU Pseudo-LRU
Fig. 4 Miss rates versus associativity for different algorithms in a

32KB cache memory

We use 2-bit Pseudo-nMOS comparators which have only
one output to be high when two inputs are equal. The circuit is
very fast and small [17-18]. These advantages become very
important in highly associative caches. Fig. 5 shows the
circuits we employed for performance evaluation.

To calculate the maximum operating frequency of the LRU
circuit, we need to measure time intervals t1, t2 which are
described as follows.

 Since one of OR gate inputs is connected to the enable of
the flip-flop from the lower row, whenever Eni+1 is set to 1, it
propagates through the OR gate and sets Eni to 1. Meanwhile,
this new value of Eni sets Eni-1 to 1 and so on. The upper
bound of the time interval for each change is t1.

The generation of LRU address is triggered by system
clock. At the rising edge of the clock, the flip-flop is activated
and updated. After updating flip-flops, the LRU index will be
presented at the bottom of the stack. The clock can be applied
as soon as the enable inputs become valid. The delay between
activating enable signals and updating stack order is referred
to as the time interval t2.

The worst case delay is used to calculate the maximum
operating frequency. This case may happen when a miss
occurred. In this situation, the miss signal becomes high and
shall propagate through OR gates to set enable inputs of flip-
flops to 1. The total number of OR gates in this sequence is n-
1 where n is set associativity. Thus, in the worst case, the
circuit needs (n-1)×t1 to update the enable signals. We recall
that the system clock triggers the generation of the LRU
address which results in updating memory cell from its last
value to its current value i.e. the last row now contains the
index of the LRU block, so the maximum delay is the
maximum value between (n-1)×t1 and t2. The following
equation describes the relation between T, time interval, and n,
associativity in LRU circuit:

]1)-Max[(nTLRU DFFOR tt +×= (1)

In Fig. 6, we illustrate the difference between our LRU and

Reference Matrix circuits in terms of operating frequency. We
employed CMOS transistor models for Spice simulations, but
the results could similarly be generalized. To compare our
architecture against Reference Matrix, we consider four
different sized of cache set (4, 8, 16, 32). Overall, the average

maximum operating frequency of our LRU circuit is 573 MHz
whereas this value is 220 MHz for Reference Matrix
architecture.

GndVddGndVddGnd

I0

I1

I2

I3

A A B B
Address Decoder

Address
Decoder

Row #k Address

Enable<k>

Enable<k+1>

m
atch<0>

m
atch<1>

m
atch<2>

m
atch<3>

Fig. 5 A sample 2-bit Pseudo-nMOS comparator

C. Discussion on Hardware Complexity
To get insights into the superiority of our circuit over

Reference Matrix in terms of hardware complexity, we notice
that memory cells are the main area consuming elements. As
we illustrated in Section 3, the number of storage bits per set
in implementation of the LRU and FIFO algorithms is equal to

n
2nlog for an n-way set associative cache. Hence, the number

of memory elements per set in 4, 8, 16 and 32-way set
associative cache corresponds to 8, 24, 64 and 160
respectively. As the memory cells are added, the chip area
increases and so the overall space of the stack which would be
fixed to the chip is in n

2nlog order. It can be inferred that the
area complexity of our architecture would be)O(nlog n

2 where
n is the number of blocks per cache set. On the other hand, a
Reference Matrix circuit as an important structure of true LRU
scheme requires n(n-1)/2 memory cells to keep the n! possible
stack formations. Therefore, the area complexity of Reference
Matrix circuit is O(n2). To test the effectiveness of our
technique over the Basic Architecture, the most important
point is that although the Basic Architecture consumes small
number of memory elements, it is nearly impossible to be
implemented due to very complex circuit.

It is revealed that our presented circuit outperforms former
architectures. In particular, our architecture provides an
average value of 26% performance improvement in storage
bits over Reference Matrix circuit. This improvement would
be much noticeable especially when the number of blocks per
set increases. One of the most significant features of our
technique in implementation of the LRU and FIFO algorithms
is expandability for high associativities which makes hardware

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1125

implementation much easier that former circuits proposed in
literatures.

0

200

400

600

800

1000

1200

1400

4 8 16 32

Associativity

Fr
eq

ue
nc

y
(M

H
z)

LRU Structure Reference Matrix
Fig. 6 Operating frequency vs. associativity for our circuit and

reference-matrix

V. CONCLUSION
In this paper, we introduced an extended version of Pseudo-

FIFO organization of LRU replacement policy. Our flexible
architecture can be readily employed in VLSI implementation
of both LRU and FIFO schemes. Results achieved using Spice
simulator show that our circuit can provide significant
performance improvements with respect to traditional
architectures such as Reference Matrix and Basic
Architecture.

ACKNOWLEDGMENT
We highly thank Dr. M. Safari, the dean of Damavand

Branch, for his support. We thank Dr. H. Hossein, Mr. M.
Ganji and Mr. M. Ranjbari as well for providing us helps in
doing this research in the Department of Computer
Engineering at the Islamic Azad University, Damavand
Branch.

REFERENCES
[1] J. Handy, The Cache Memory Book, Academic Press, San Diego, pp.

47-67, 1993.
[2] H. Ghasemzadeh, S. Mazrouee and M. R. Kakoee, Modified Pseudo

LRU Replacement Algorithm, 13th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems (ECBS), pp. 368-376, March 27-30 2006.

[3] R. Pendse, Pipeline LRU Block Replacement Algorithm, Proc. 43rd
Midwest Symp. On Circuits and Systems, Lansing MI, Aug. 8-11, 2002.

[4] J. Jeong and M. Dubios, Cost-Sensitive Cache Replacement Algorithms,
9th International Symposium on High-Performance Computer
Architecture (HPCA-9'03), 2002.

[5] S. Jiang, X. Zhang, Making LRU Friendly to Weak Locality Workloads :
A Novel Replacement Algorithm to Improve Buffer Cache Performance,
IEEE Transactions on Computers, Vol. 54, No. 8, Aug. 2005.

[6] R. Pendse, Pipeline LRU Block Replacement Algorithm, Proc. 43rd
Midwest Symp. On Circuits and Systems, Lansing MI, Aug. 8-11, 2002.

[7] D. Lee, et. Al., LRFU : a spectrum of policies that subsumes the least
recently used and least frequently used policies, IEEE Transaction on
Computers, vol. 50, no. 12, pp. 1352-1361, 2001.

[8] A.W. Wayne and J.L. Baer, Modified LRU Policies for Improving
Second-Level Behavior, proceeding 6th International Symposium on
High-Performance Computer Architecture, pp. 49-60, 2000.

[9] Yoon, J., Min, S.L., and Cho, Y., Buffer cache management: predicting
the future from the past, International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN'02), pp. 92-97, 2002.

[10] H. Ghasemzadeh and S. O. Fatemi, Pseudo-FIFO Architecture of LRU
Replacement Algorithm, Proc. 9th IEEE International Multi Topic
Conference (INMIC), December 23-25, 2005.

[11] D. Lamet and J.F. Frenzel, Defect-Tolerant Cache Memory Design,
IEEE Transactions on Computers, April 1993.

[12] B. Beridegard, B. Nilsson and L. Philipson, VLSI Implementation of A
Virtual Memory Paging Algorithm, VLSI: Algorithms and Architectures,
Elsevier Science Publishers B.V., pp. 167-174, 1985.

[13] W. Luk and G. Brown, A Systolic LRU Processor and Its Top-Down
Development, Science of Computer Programming, Vol. 15, pp. 217-233,
1990.

[14] O. Fatemi, F. Idris and S. Panchanathan, FPGA Implementation of the
LRU Algorithm for Video Compression, IEEE 1994 International
Conference on Acoustics, Speech, and Signal Processing, pp. 337-344,
June 1994.

[15] K.A. Hurd, A 600MHZ 64b PA-RISC Microprocessor, ISSCC Digest of
Technical Papers, pp 94-95, February 2000.

[16] K. Maruyama, mLRU Replacement Algorithm in terms of the Reference
Matrix, IBM Technical Disclosur Bulletin, pp. 3101-3103, March 1975.

[17] J.M. Rabaey, Digital Integrated Circuits, A Design Perspective, Prentice-
Hall Electronics and VLSI Series, pp. 332-381, 1996.

[18] Weste N.H.E. and Eshraghian K., Principles of CMOS VLSI Design, A
System Perspective, Second Edition, Addison-Wesely Publishers
Company, pp. 513-620, 1994.

Hassan Ghasemzadeh received the BSc degree in Computer Engineering
from the Sharif University of Technology, Tehran, Iran, and the MSc degree
in Electrical and Computer Engineering from the University of Tehran,
Tehran, Iran, in 1998 and 2001 respectively. Currently, he is a faculty member
and director of undergraduate studies in the Department of Computer
Engineering at the Islamic Azad University, Damavand Branch.

