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Abstract—Block replacement algorithms to increase hit ratio 

have been extensively used in cache memory management. Among 
basic replacement schemes, LRU and FIFO have been shown to be 
effective replacement algorithms in terms of hit rates. In this paper, 
we introduce a flexible stack-based circuit which can be employed in 
hardware implementation of both LRU and FIFO policies. We 
propose a simple and efficient architecture such that stack-based 
replacement algorithms can be implemented without the drawbacks 
of the traditional architectures. The stack is modular and hence, a set 
of stack rows can be cascaded depending on the number of blocks in 
each cache set. Our circuit can be implemented in conjunction with 
the cache controller and static/dynamic memories to form a cache 
system. Experimental results exhibit that our proposed circuit 
provides an average value of 26% improvement in storage bits and its 
maximum operating frequency is increased by a factor of two 
 

Keywords—Cache Memory, Replacement Algorithms, Least 
Recently Used Algorithm, First In First Out Algorithm. 

I. INTRODUCTION 
N modern computer systems the efficiency of the memory 
hierarchy is one of the most crucial issues. To obtain a 

high-performance memory system, caching is the best 
direction in terms of cost and effectiveness. The performance 
of the cache memories to compensate the speed gap between 
processors and main memory is determined by the access time 
and miss rates. Researches have proposed various cache 
memory replacement schemes to enhance cache performance 
and reduce its costs. [1-9] 

The most cost-effective organization of cache memory 
called set associative cache holds several blocks per set. This 
organization is generally employed by cache designers as it 
offers a reasonable balance between hit ratio and 
implementation costs. When a cache miss occurs, the cache 
controller decides which block must be replaced. To make a 
replacement decision, designers exploit three basic 
replacement algorithms, Least Recently Used (LRU), First In  
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First Out (FIFO) and Random policies, or employ some 
variations of these conventional schemes. Random 
replacement algorithm could be easily implemented using a 
Pseudo Random Generator circuit. Most efforts have been 
made to introduce efficient architectures of the true LRU and 
FIFO algorithms. 

This paper presents a flexible architecture which can be 
used for implementation of both LRU and FIFO algorithms. 
Aforementioned architecture is an extended version of the 
Pseudo-FIFO which is previously introduced in [10]. Our 
architecture needs just some minor changes to move from one 
algorithm to another because we implement both control 
circuits in a stack structure. In the LRU algorithm, each cache 
set is treated as a stack and a reference to a particular block 
moves that block to the top of the stack. The least recently 
used block is always at the bottom and on a miss, new data 
will be loaded into this block and moved to the top of the 
stack. A block is also moved to the top on a cache hit because 
it is now the most recently used block. [14] 

The rest of this paper is organized as follows. In Section 2, 
we present some related works. The details of our circuits are 
given in Section 3. In Section 4, we present the performance 
evaluation of proposed architecture, and finally we conclude 
the paper in Section 5. 

II. RELATED WORK 
Cache memory replacement policies to decrease the miss 

rates have been widely studied in the past. Many replacement 
algorithms have been proposed and some of them such as the 
LRU and FIFO are extensively adopted in caches. Authors in 
[11] presented a defect-tolerant control circuit for a set 
associative cache memory. This circuit keeps stack ordering 
necessary for implementation of the LRU replacement 
algorithm in a 4-way set associative cache. This method that 
requires n(n-1)/2 bits of memory per set, called Reference 
Matrix as it revolves around the concept of a reference matrix. 
This architecture takes advantage of reasonable bits, but it has 
still low clock rate for practical purposes. The LRU scheme 
produces good results in terms of low miss rates, but there are 
some crucial design issues to exploit this algorithm in CPU 
caches. The most important point is that this policy can 
quickly consume plenty of memory elements as the 
associativity grows. Researchers in [1] introduced an idealized 
circuit of the LRU called Basic Architecture. The drawback 
with this architecture is that for higher associativities the 
number of bits grows significantly. The problems with 
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implementation of LRU led cache designers to employ an 
approximation of this scheme instead of its full structure. 
Authors in [12] designed a chip to implement LRU 
approximation scheme. In [13], authors presented a systolic 
LRU processor which requires n)(3nlogn

2 + storage bits per set. 
Many new Intel processors like Pentium use a binary tree 
structure called Pseudo-LRU for implementing an 
approximation of the LRU in a 4-way set associative cache. 
Instead of 5 bits in Basic Architecture, Pseudo-LRU needs 
only 3 bits of memory elements per cache line. In [14], 
authors proposed an approximation to the LRU replacement 
scheme which has been implemented for video compression 
purposes. Also, authors in [15] reported an approximation of 
the LRU called Quasi-LRU in a 4-way set associative, 1MB 
and dual ported data cache memory. This circuit is the same 
Pseudo-LRU used by Intel that was pointed to before. We 
note that these architectures are very complex so that they 
could not be implemented and/or cascaded withal having more 
miss rates for approximation structures than true ones.  

III. SYSTEM ARCHITECTURE 
The original idea behind our architecture is to implement 

stack-based algorithms such as the LRU and FIFO in a stack 
structure. This stack contains n entries, each of which 
represents a block. We recall from Section 1 that the replaced 
block (actually, its address) is always stored at the bottom of 
the stack. In our architecture, there are n

2nlog  bits ordered in 
n rows, each row consists n

2log  bits, altogether form a control 
stack. Fig. 1 exhibits a top level block diagram of system 
architecture for a 4-way set associative cache. Each row in 
stack circuit refers to corresponding block in a cache set. The 
power-up state of the stack is significant since initial values 
indicate stack order at the startup time. A precharge signal 
which should be activated at the startup is applied to the 
circuit to convey the memory elements to an initial state.  

When the CPU makes a memory call and the cache receives 
it, the tag field of CPU address is associatively searched in 
tag-RAM. The tag-RAM has some output signals that 
determine the address on which a hit occurred, or a miss 
signal becomes high to indicate that the referred block is not 
in the cache. Therefore, in a 4-way set associative cache, five 
bits are issued due to cache controller output as the inputs to 
control circuit to show the status of current accessed block. 
The four first bits, match<0> thru match<3> correspond to a 
row of the stack on a hit. When a miss occurs, the match 
signals are high impedance and the miss is used to update the 
stack.  

A. LRU Control Circuit 
The stack circuit is updated during each clock cycle to 

maintain blocks order in corresponding cache set. In an LRU 
circuit, three different situations may happen during a memory 
access: 
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Fig. 1 Top Level Block Schematic of System Architecture 
 

 When an access to most recently used block occurs, no 
change in stack order should happen. The MRU block is 
always at the top location of the stack. Therefore, on an access 
to most recently used block, the stack is not needed to be 
updated. 

 If requested block is not found in the cache, a cache miss 
has occurred. The miss signal becomes high through the tag-
RAM output. In this situation, LRU block whose address is at 
the bottom is sent to the cache controller. Consequently, the 
requested block is brought from main memory and copied to 
appropriate space in the cache. Now, the address at the bottom 
refers to the most recently accessed block. Therefore, on a 
cache miss, the address at the bottom of the stack should be 
moved to the top of the stack indicating most recently used 
block, and the other addresses should be shifted down once in 
the stack. 

 If requested block is found in every place in the cache set 
except the top of the stack, a hit has occurred and the stack 
should be updated. In this case, the row which contains the 
address of accessed block should be moved to the top and all 
the upper rows will be shifted down. 
In Fig. 2, we show the control circuit of the LRU replacement 
scheme for a 4-way set associative cache. The circuit has n+1 
inputs and n

2log  outputs, where n is associativity. The outputs 
indicate the block which has been used least recently. The 
inputs include n lines called match and one line called miss. 
The match lines are compared with different rows of the stack. 
The outputs produced by one comparator show the equality of 
match inputs and stack rows as the stack contains all 
variations of match lines. The match inputs are equivalent to 
just one row in the stack. The comparator outputs force the 
enable inputs of the flip-flops to be activated. 
On a hit, the rows above the row where the hit occurred must 
be shifted down to update stack order. We have used cascaded 
OR gates to activate load enable of the flip-flops. When the 
miss input becomes high, in addition to move the bottom cells 
to the top, all upper rows are transferred down. Therefore, the 
miss signal activates the enable input of the last row and 
propagates through the OR gates to activate the load enable of 
the upper rows. 

Replaced Block Address 

Stack Circuit 
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Fig. 2 LRU control circuit for a 4-way set associative cache memory 
 

In this architecture, there are n
2log  transfer lines that move 

row content to the top. The row is selected through 
comparator outputs and there are some nMOS switches in 
each line that move stack content to the transfer lines. On a 
row match, the load enables of the matched row and all upper 
rows become high and the content of the matched row appears 
on the transfer lines. When system clock arrives, the 
transmigration is done and the stack is updated. Now, the 
stack is stable, MRU block address is at the top and LRU 
block address could be found at the bottom. The same 
scenario occurs at the next memory access. 

The memory cells are normal D-flip-flops with enable 
inputs. In Fig. 2, it is apparent that the lines to En on the flip-
flops on the left are meant to continue to the adjacent flip-flop 
on the right. At the power-up state, precharge signal sets flip-
flop outputs to appropriate values to form initial order of the 
LRU stack. As we saw before, each LRU circuit consists of 
some flip-flops and associated combinational logic circuits 
which update status of the flip-flops. 

B. FIFO Control Circuit 
To update stack order in a FIFO structure, there are two 

different situations when a memory call occurs: 
 On a cache miss, the address at the bottom of the stack 

refers to the first block brought to the corresponding cache set. 
Therefore, the address at the bottom should be moved to the 
top of the stack indicating first arrived block, and the other 
addresses should be shifted down once in the stack. 

 On a cache hit, the stack order should be kept as it has 
been before a memory reference. Actually, on a hit, the first 
arrived block dose not change. 

Fig. 3 shows the control circuit of the FIFO algorithm for a 
4-way set associative cache. This circuit has only 1 input 
(miss signal), while it has, like LRU, n

2log outputs. The 
outputs indicate the first arrived block which should be 
replaced with the new block.  
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Fig. 3 FIFO control circuit for a 4-way set associative cache memory 

IV. PERFORMANCE EVALUATION 

A. Miss Rates Analysis 
We employ trace-driven simulations with several kinds of 

workloads to evaluate LRU and FIFO algorithms and compare 
them with other common schemes such as Random and 
Pseudo-LRU. Hence, the cache simulator is developed to 
support all aforementioned replacement algorithms. 
Workloads used in this trace-driven simulation include fifteen 
different types of programs (dec0, fora, forf, fsxzz, lvex, lisp, 
macr, memxx, mul2, mul3, pasc, ue02, spice, gcc, tex) 
including more then 3,000,000 references. Both data and 
instruction references are collected and used for simulation. 
We used 32-byte block size in a 32 KB unified cache and 
evaluated the replacement schemes in terms of miss rates. Fig. 
4 demonstrates the resulting performance with different 
associativity values. In this diagram, each data-point 
corresponds to the average taken over all aforementioned 
benchmarks. 

It is shown that LRU algorithm provides average values of 
13.49% and 8.46% improvement over Random and Pseudo-
LRU algorithms. Also, FIFO algorithm has an average 4.31% 
performance improvement over Random algorithm. Although, 
Pseudo-LRU provides a small improvement of 1.24% over 
FIFO, it has more hardware complexity compared to FIFO 
scheme. Therefore, there is still a considerable performance 
gap between LRU/FIFO and Random/Pseudo-LRU 
replacement schemes that leads us to implement new 
architectures of LRU and FIFO. 

B. Time Complexity Analysis 
We consider operating frequency as an important 

parameters in evaluating timing analysis of our architecture. A 
comparison is made between Reference Matrix circuit [11,16] 
and our LRU circuit in terms of operating frequency. We do 
not include Basic Architecture of the LRU algorithm in this 
evaluation because this architecture is indeed an idealized 
structure of LRU and mainly impossible to be implemented 
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for practical purposes. 
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32KB cache memory 

We use 2-bit Pseudo-nMOS comparators which have only 
one output to be high when two inputs are equal. The circuit is 
very fast and small [17-18]. These advantages become very 
important in highly associative caches.  Fig. 5 shows the 
circuits we employed for performance evaluation. 

To calculate the maximum operating frequency of the LRU 
circuit, we need to measure time intervals t1, t2 which are 
described as follows. 

 Since one of OR gate inputs is connected to the enable of 
the flip-flop from the lower row, whenever Eni+1 is set to 1, it 
propagates through the OR gate and sets Eni to 1. Meanwhile, 
this new value of Eni sets Eni-1 to 1 and so on. The upper 
bound of the time interval for each change is t1. 

The generation of LRU address is triggered by system 
clock. At the rising edge of the clock, the flip-flop is activated 
and updated. After updating flip-flops, the LRU index will be 
presented at the bottom of the stack. The clock can be applied 
as soon as the enable inputs become valid. The delay between 
activating enable signals and updating stack order is referred 
to as the time interval t2. 

The worst case delay is used to calculate the maximum 
operating frequency. This case may happen when a miss 
occurred. In this situation, the miss signal becomes high and 
shall propagate through OR gates to set enable inputs of flip-
flops to 1. The total number of OR gates in this sequence is n-
1 where n is set associativity. Thus, in the worst case, the 
circuit needs (n-1)×t1 to update the enable signals. We recall 
that the system clock triggers the generation of the LRU 
address which results in updating memory cell from its last 
value to its current value i.e. the last row now contains the 
index of the LRU block, so the maximum delay is the 
maximum value between (n-1)×t1 and t2. The following 
equation describes the relation between T, time interval, and n, 
associativity in LRU circuit: 

 
]1)-Max[(nTLRU DFFOR tt +×=                        (1) 

 
In Fig. 6, we illustrate the difference between our LRU and 

Reference Matrix circuits in terms of operating frequency. We 
employed CMOS transistor models for Spice simulations, but 
the results could similarly be generalized. To compare our 
architecture against Reference Matrix, we consider four 
different sized of cache set (4, 8, 16, 32). Overall, the average 

maximum operating frequency of our LRU circuit is 573 MHz 
whereas this value is 220 MHz for Reference Matrix 
architecture. 
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Fig. 5 A sample 2-bit Pseudo-nMOS comparator 

 

C. Discussion on Hardware Complexity 
To get insights into the superiority of our circuit over 

Reference Matrix in terms of hardware complexity, we notice 
that memory cells are the main area consuming elements. As 
we illustrated in Section 3, the number of storage bits per set 
in implementation of the LRU and FIFO algorithms is equal to 

n
2nlog for an n-way set associative cache. Hence, the number 

of memory elements per set in 4, 8, 16 and 32-way set 
associative cache corresponds to 8, 24, 64 and 160 
respectively. As the memory cells are added, the chip area 
increases and so the overall space of the stack which would be 
fixed to the chip is in n

2nlog order. It can be inferred that the 
area complexity of our architecture would be )O(nlog n

2 where 
n is the number of blocks per cache set. On the other hand, a 
Reference Matrix circuit as an important structure of true LRU 
scheme requires n(n-1)/2 memory cells to keep the n! possible 
stack formations. Therefore, the area complexity of Reference 
Matrix circuit is O(n2). To test the effectiveness of our 
technique over the Basic Architecture, the most important 
point is that although the Basic Architecture consumes small 
number of memory elements, it is nearly impossible to be 
implemented due to very complex circuit. 

It is revealed that our presented circuit outperforms former 
architectures. In particular, our architecture provides an 
average value of 26% performance improvement in storage 
bits over Reference Matrix circuit. This improvement would 
be much noticeable especially when the number of blocks per 
set increases. One of the most significant features of our 
technique in implementation of the LRU and FIFO algorithms 
is expandability for high associativities which makes hardware 
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implementation much easier that former circuits proposed in 
literatures. 
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V. CONCLUSION 
In this paper, we introduced an extended version of Pseudo-

FIFO organization of LRU replacement policy. Our flexible 
architecture can be readily employed in VLSI implementation 
of both LRU and FIFO schemes. Results achieved using Spice 
simulator show that our circuit can provide significant 
performance improvements with respect to traditional 
architectures such as Reference Matrix and Basic 
Architecture. 
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