Group of Square Roots of Unity Modulo n

Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract

Let $n \geq 3$ be an integer and $\mathbf{G}_{2}(n)$ be the subgroup of square roots of $1 \mathrm{in}(\mathbb{Z} / n \mathbb{Z})^{*}$. In this paper, we give an algorithm that computes a generating set of this subgroup.

Keywords-Group, modulo, square roots, unity.

I. Introduction

LET $n \geq 3$ be an integer, recall that $(\mathbb{Z} / n \mathbb{Z})^{*}$ denotes the group of units of the ring $(\mathbb{Z} / n \mathbb{Z})$. Let $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ the primary decomposition of n, then

$$
(\mathbb{Z} / n \mathbb{Z})^{*}=\prod_{i=1}^{m}\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right)^{*}
$$

for more details on the structure of $(\mathbb{Z} / n \mathbb{Z})^{*}$ see [1] and [2]. The group $(\mathbb{Z} / n \mathbb{Z})^{*}$ has several applications, the most important is cryptography, that is RSA cryptosystem (see [5]). The security of the RSA cryptosystem is based on the problem of factoring large numbers and the task of finding $e^{t h}$ roots modulo a composite number n whose factors are not known.
In [8], D.Shanks gives a probabilistic algorithm that computes a square root of an integer modulo an odd prime p. There are other algorithms that compute a square root of an integer modulo an integer n (see [7]) and more generally in a finite fields (see [6]).
We denote by $\mathbf{G}_{2}(n)$ the subgroup of $(\mathbb{Z} / n \mathbb{Z})^{*}$ which is formed by the integers x that satisfies $x^{2}=1$, such integers are called square roots of unity modulo n. More precisely $\mathbf{G}_{2}(n)$ contains the unity and elements of order 2.
Recall that elements of order 2 exists always in $(\mathbb{Z} / n \mathbb{Z})^{*}$ (-1 has for order 2), therefore $\mathbf{G}_{2}(n)$ is not a trivial group. Finally remark that all elements of $\mathbf{G}_{2}(n)$ except the unity has for order 2, so $\mathbf{G}_{2}(n)$ has an order a power of 2 , so we obtain the following result :

Proposition

Let $n \geq 3$ be an integer, then there exists an integer $t \geq 1$ such that :

$$
\operatorname{Ord}\left(\mathbf{G}_{2}(n)\right)=2^{t} .
$$

In this article, we will give an algorithm that computes a generating set of $\mathbf{G}_{2}(n)$ and gives its decomposition into product of cyclic subgroups. Finally this algorithm will be written in MAPLE language.

II. SQuare roots of unity modulo n

Let $n \geq 3$ be an integer and $n=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ its primary decomposition. In this study, we shall distinguish the

Rochdi Omami, Mohamed Omami and Raouf Ouni are doctoral students at the Faculty of Science of Tunis : University El Manar, Tunis 2092
cases $\alpha=0, \alpha=1, \alpha=2$ and $\alpha \geq 3$.
Case 1: $\alpha=0$

Let $n \geq 3$ be an integer and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ its primary decomposition. Let x be an element of $(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $x^{2}=1$, that is n divides $x^{2}-1=(x-1)(x+1)$. We have $(x+1)-(x-1)=2$, therefore $G C D(x-1, x+1) \in\{1,2\}$, so if p_{i} divides $x-1$ then $p_{i}^{\alpha_{i}}$ divides $x-1$.
If we note, for example, $p_{1}, p_{2}, \ldots, p_{s}$ the primes among the p_{i} which divide $x-1$, then x is a solution of this system :

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{s}^{\alpha_{s}} K \\
x+1=p_{s+1}^{\alpha_{s+1}} p_{s+2}^{\alpha_{s+2}} \ldots p_{m}^{\alpha_{m}} K^{\prime}
\end{array}\right.
$$

It's clear that x is the unique solution of this system modulo n. Conversely, any system of the previous form gives a square root of unity modulo n.
Note that a two different systems of this form give two different solutions, indeed let the systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
y-1=p_{\rho(1)}^{\alpha_{\tau(1)}} p_{\rho(2)}^{\alpha_{\rho(2)}} \ldots p_{\rho(r)}^{\alpha_{\rho(r)}} K_{1}^{\prime} \\
y+1=p_{\rho(r+1)}^{\alpha_{\rho(r+1)}} p_{\rho(r+2)}^{\rho(r+2)} \ldots p_{\rho(m)}^{\alpha_{\rho(m)}} K_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

where σ and ρ are two permutations of the set $\{1,2, . ., m\}$, if $x=y$, then the set of prime divisors of $x-1$ among the p_{i} is the same of $y-1$. Therefore the set of prime divisors of $x-1$ among the p_{i} is $\left\{p_{\sigma(1)}, p_{\sigma(2)}, \ldots, p_{\sigma(s)}\right\}$ because $p_{\sigma(s+1)}, p_{\sigma(s+2)}, \ldots$ and $p_{\sigma(m)}$ does not divide K_{1}, indeed :
$p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}-p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}=2$.
Thus $G C D\left(K_{1}, p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}}\right) \in\{1,2\}$, so $\left\{p_{\sigma(1)}, p_{\sigma(2)}, \ldots, p_{\sigma(s)}\right\}=\left\{p_{\rho(1)}, p_{\rho(2)}, \ldots, p_{\rho(r)}\right\}$, it follows that the two systems are identical.
We conclude that the number of square roots of unity modulo n is equal to the number of partitions of the set $\{1,2, . ., m\}$, that is 2^{m}. Note that the empty subset corresponds to -1 and if all p_{i} divide $x-1$, then $x=1$. So we have proved :

Proposition 2.1: Let $n \geq 3$ be an integer, then

$$
\operatorname{Ord}\left(\mathbf{G}_{2}(n)\right)=2^{\omega(n)}
$$

where $\omega(n)$ denote the number of distinct prime factors of n.
Now we study the structure of the group $G_{2}(n)$. For simplicity throughout this section, we take $n \geq 3$ to be an odd integer
and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ its primary decomposition. we start with this definition :

Definition 2.1: Let x be a square root of unity modulo n. x is said to be initial if all prime factors of n divide $x-1$ except only one p_{i}, we said that x is associated with p_{i}. And we note :

$$
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{v_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K . ~}{\text {. }}
$$

where K is an integer not divisible by p_{i} and the symbol $p_{i}^{\alpha_{i}}$ means that we remove the factor $p_{i}^{\alpha_{i}}$.

Note that for any $i \in\{1,2, . ., m\}$ there exist only one square root of unity associated with p_{i} which is the solution of this system:

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\ldots p_{m}^{\alpha_{m}} K} \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

We denote by $\mathbf{G}_{2}^{p_{i}}(n)$ the set that contains this solution and the unity, so $\mathbf{G}_{2}^{p_{i}}(n)$ is a cyclic subgroup of $\mathbf{G}_{2}(n)$ of order 2. We have the following theorem :

Theorem 2.1: The map

$$
\begin{aligned}
\varphi: \mathbf{G}_{2}^{p_{1}}(n) \times \mathbf{G}_{2}^{p_{2}}(n) \ldots \times \mathbf{G}_{2}^{p_{m}}(n) & \longrightarrow \quad \mathbf{G}_{2}(n) \\
\left(x_{1}, x_{2}, \ldots, x_{m}\right) & \longmapsto x_{1} \cdot x_{2}, \ldots x_{m}
\end{aligned}
$$

is an isomorphism of groups.

Proof :

It's clear that φ is a morphism of groups, we will show first that φ is injective.
We have $\varphi\left(x_{1}, x_{2}, \ldots, x_{m}\right)=1 \Longleftrightarrow x_{1} \cdot x_{2}, \ldots x_{m}=1$. Suppose that there exists an integer i such that $x_{i} \neq 1$, therefore p_{i} does not divides $x_{i}-1$. Also, for $j \neq i, p_{i}$ divides $x_{j}-1$. Then we have:

$$
x_{i}=1+K_{i} \quad \text { and } \quad x_{j}=1+p_{i} \cdot K_{j}
$$

where p_{i} does not divides K_{i}, so

$$
\begin{aligned}
x_{1} \cdot x_{2}, \ldots x_{m} & =\left(1+p_{i} \cdot K_{1}\right) . .\left(1+K_{i}\right) . .\left(1+p_{i} \cdot K_{m}\right) \\
& =\left(1+p_{i} K^{\prime}\right)\left(1+K_{i}\right) \\
& =1+\left(p_{i} K^{\prime}+p_{i} K^{\prime} K_{i}+K_{i}\right) .
\end{aligned}
$$

Since p_{i} does not divides K_{i}, then p_{i} does not divides $x_{1} \cdot x_{2}, \ldots x_{m}-1$, that is absurd. Thus $x_{i}=1$ for all $i \in\{1,2, . ., m\}$. Hence φ is injective.
Finally, we remark that:
$\operatorname{Ord}\left(\mathbf{G}_{2}^{p_{1}}(n) \times \mathbf{G}_{2}^{p_{2}}(n) \ldots \times \mathbf{G}_{2}^{p_{m}}(n)\right)=\operatorname{Ord}\left(\mathbf{G}_{2}(n)\right)=2^{m}$
so φ is bijective, therefore it's an isomorphism.

Remark :

The fact that φ is injective is due to the choice of x_{i}, i.e. the initial square roots of the unity. The previous theorem shows that $\mathbf{G}_{2}(n)$ is exactly formed by the unity and finished
products without the repetition of the initial square roots of the unity. In other words, if x_{i} denote the initial square root of the unity associated with p_{i}, then :

$$
\mathbf{G}_{2}(n)=\left\{\prod_{i \in I} x_{i} \quad, \text { avec } I \subset\{1,2, . ., m\}\right\}
$$

With the convention that the unity is the product over empty set.
Remark also that -1 is the product of all x_{i}, Indeed :

$$
\begin{aligned}
\prod_{i=1}^{m} x_{i} & =\prod_{i=1}^{m}\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\ldots} p_{m}^{\alpha_{m}} K_{i}\right) \\
& =1+\sum_{i=1}^{m} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{v_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K_{i}+K n
\end{aligned}
$$

since $\sum_{i=1}^{m} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K_{i}$ is not divisible by all p_{i} because K_{i} is not divisible by p_{i}, we conclude that $\prod_{i=1}^{m} x_{i}-1$ is not divisible by all p_{i}. It follows $\prod_{i=1}^{m} x_{i}=-1$. Finally, we have the following result :

Corollary 2.1: Let x_{i} be the initial square root of the unity associated with p_{i}, then :

$$
\mathbf{G}_{2}(n)=<x_{1}, x_{2}, \ldots, x_{m}>
$$

Now, we give an algorithm written in MAPLE that computes the x_{i}, i.e. a generating set of $\mathbf{G}_{2}(n)$.
Let us give some explanations. Resuming the system :

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

This system gives the following equation :

$$
p_{i}^{\alpha_{i}} K^{\prime}-p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee \alpha_{i}} \ldots p_{m}^{\alpha_{m}} K=2
$$

and Bezout algorithm allows us to compute K and K^{\prime} and all x_{i}.

Gene_2 $:=\operatorname{proc}(n) \quad$ local LB,, LFFact, GEN;
GEN := []; LB := [];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
$L B:=\operatorname{Bezout}\left(\operatorname{LFact}[i][1]^{\wedge} \operatorname{LFact}[i][2]\right.$,
$n /($ LFact $[i][1] \sim$ LFact $[i][2]), 2)$;
$G E N:=[o p(G E N), L B[1] *$
LFact $[i][1]^{\wedge}$ LFact $\left.[i][2]-1 \bmod n\right]$;
end :
$\operatorname{eval}(G E N)$;
end :

Algorithm 1.1

An application example :

To find the generators of the group of square root of the unity modulo $11 \times 13 \times 17 \times 19$, we can use the previous algorithm with the command

$$
\text { Gene_2(11 * } 13 * 17 * 19) \text {; }
$$

We have the following result [33593, 21319, 32605, 4863], that is the list of generators.

Remark :

The Bezout function which is used in the previous algorithm is not a MAPLE function, but it's a classical algorithm called Extended Euclidean algorithm.

Case 2: $\alpha=1$
Let $n \geq 3$ be an integer such that its primary decomposition is $n=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$. Let x be an element of $(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $x^{2}=1$, that is n divides $x^{2}-1=(x-1)(x+1)$. We have $(x+1)-(x-1)=2$, therefore $G C D(x-1, x+1) \in\{1,2\}$. So, if p_{i} divides $x-1$, then $p_{i}^{\alpha_{i}}$ divides $x-1$.
Also 2 divides $(x-1)(x+1)$, thus 2 divides $(x-1)$ or $(x+1)$. Since $(x+1)-(x-1)=2$, then 2 divides $(x-1)$ and $(x+1)$, so x is a solution of a system of this form :

$$
\left\{\begin{array}{l}
x-1=2 p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right.
$$

where σ is a permutation of the set $\{1,2, \ldots, m\}$. It's clear that x is the only solution modulo n of this system and every system of this form gives a square root of the unity modulo n. We show in the same way as the previous case, that two different systems gives two distinct solutions. Therefore, the number of square roots of the unity modulo n is the number of partitions of the set $\{1,2, . ., m\}$, that is 2^{m}. Hence, we have the following result:

Proposition 2.2: Let $n \geq 3$ be an odd integer, then

$$
\operatorname{Ord}\left(\mathbf{G}_{2}(2 n)\right)=2^{\omega(n)}
$$

where $\omega(n)$ denote the number of distinct prime factors of n.
For simplicity throughout this section we take $n \geq 3$ to be an integer and $n=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ its primary decomposition. We start the study of $\mathbf{G}_{2}(n)$ with this definition :

Definition 2.2: Let x be a square root of unity modulo n. x is said to be initial if all the prime factors of n divide $x-1$ except only one p_{i}, we said that x is associated with p_{i}. And we note :

$$
x-1=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K
$$

where K is an integer that does not divisible by p_{i} and the symbol $p_{i}^{\alpha_{i}}$ means that we remove the factor $p_{i}^{\alpha_{i}}$.

We remark that for each $i \in\{1,2, . ., m\}$, there exists only one square root of unity associated with p_{i} which is the solution of the following system :

$$
\left\{\begin{array}{l}
x-1=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

We denote by $\mathbf{G}_{2}^{p_{i}}(n)$ the set that contains this solution and the unity, so $\mathbf{G}_{2}^{p_{i}}(n)$ is a cyclic subgroup of $\mathbf{G}_{2}(n)$ of order 2. We have the following theorem :

Theorem 2.2: The map

$$
\begin{aligned}
& \varphi: \mathbf{G}_{2}^{p_{1}}(n) \times \mathbf{G}_{2}^{p_{2}}(n) \ldots \times \mathbf{G}_{2}^{p_{m}}(n) \longrightarrow \quad \mathbf{G}_{2}(n) \\
&\left(x_{1}, x_{2}, \ldots, x_{m}\right) \longmapsto \\
& x_{1} \cdot x_{2}, \ldots x_{m}
\end{aligned}
$$

is an isomorphism of groups.

Remark :

the previous theorem shows that

$$
\mathbf{G}_{2}(n)=\left\{\prod_{i \in I} x_{i} \quad, \text { avec } I \subset\{1,2, . ., m\}\right\}
$$

and we have also $\prod_{i=1}^{m} x_{i}=-1$.
Corollary 2.2: Let x_{i} be the initial square root of the unity associated with p_{i}, then

$$
\mathbf{G}_{2}(n)=<x_{1}, x_{2}, \ldots, x_{m}>
$$

We finish this section with the fact that the algorithm 1.1 remains valid with integers of the form $n=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$, just replacing LFact $:=\quad$ ifactors $(n)[2]$; by LFact $:=$ ifactors $(n / 2)[2] ;$, it follows the algorithm 1.2.

Case 3: $\alpha=2$

Let $n \geq 3$ be an integer such that its primary decomposition is $n=4 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$. If all α_{i} are nuls, then $n=4$. We know that $(\mathbb{Z} / 4 \mathbb{Z})^{*}=\{1,-1\}=<-1>$, therefore, we suppose that at least one of the α_{i} is not null.
Let x be an element of $(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $x^{2}=1$, that is n divides $x^{2}-1=(x-1)(x+1)$. We have $(x+1)-(x-1)=2$, therefore 2 divides $(x-1)$ and $(x+1)$. But 2 is not an ordinary prime, indeed we have the following equivalence :

$$
x \equiv 1[2] \Longleftrightarrow x^{2} \equiv 1[8] .
$$

It follows that 8 divide $x^{2}-1=(x-1)(x+1)$. Since $G C D(x-$ $1, x+1)=2$, therefore 4 divides $(x-1)$ or $(x+1)$, so x is a solution of one of the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=4 p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}^{\prime} \\
x+1=4 p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}^{\prime}}
\end{array}\right.
\end{aligned}
$$

where σ is a permutation of the set $\{1,2, . ., m\}$. It's clear that each one of these systems has a unique solution modulo n and each system of this form gives a square root of the unity modulo n. We shows also that a two different systems gives two distinct solutions. Therefore, the number of square roots of the unity modulo n is twice the number of partitions of the set $\{1,2, \ldots, m\}$, that is 2^{m}. Hence, we have the following result:

Proposition 2.3: Let $n \geq 3$ be an odd integer, then

$$
\operatorname{Ord}\left(\mathbf{G}_{2}(4 n)\right)=2^{\omega(n)+1}
$$

where $\omega(n)$ denote the number of distinct prime factors of n.
For simplicity throughout this section we take $n \geq 3$ to be an integer and $n=4 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ its primary decomposition with at least one of the α_{i} as being not null. Now we start studying of $\mathbf{G}_{2}(n)$. Consider the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=4 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1} \\
x+1=K_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}^{\prime} \\
x+1=4 K_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

It's clear that 1 is the only solution of the first system. The second system has only solution which is $x_{0}=n / 2+1$. This solution is called second trivial square root of the unity, we denote by $\mathbf{G}_{2}^{0}(n)$ the cyclic subgroup which is formed by 1 and x_{0}.

Proposition 2.4: Let the systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=4 p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}^{\prime} \\
x+1=4 p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

if we note by x the solution of the first system and y that of the second. then $y=x_{0} x$ (and also $x=x_{0} y$).

Proof:

It's clear that $x_{0} x$ is a square root of the unity. We have :

$$
\begin{aligned}
x_{0} x= & \left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}^{\prime}\right) \\
& \left(1+4 p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}\right) \\
= & 1+p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}}\left(4 K_{1}+\right. \\
& \left.p_{\sigma(s+1)}^{\alpha_{\sigma(s) 1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{1}^{\prime}\right)+K n
\end{aligned}
$$

Since K_{1}^{\prime} is not divisible by 4 and K_{1} is not divisible by $p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}}, p_{\sigma(s+2)}^{\sigma(s+2)} \ldots$ and $p_{\sigma(m)}^{\alpha_{\sigma(m)},}$, therefore $x_{0} x-1$ is not divisible by $4, p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}}, p_{\sigma(s+2)}^{\sigma(s+2)} \cdots$ and $p_{\sigma(m)}^{\alpha_{\sigma(m)}}$. So $x_{0} x$ is solution of the second system,i.e. $x_{0} x=y$

Definition 2.3: Let x be a square root of the unity modulo n. We said that x is of the first category if 4 divides $x-1$, else we said that x is of the second category.

Remark :

From the definition, we see that a square root of the unity of the first category is a solution of a system of the form :

$$
\left\{\begin{array}{l}
x-1=4 p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right.
$$

also a square root of the unity of the second category is the product of a square root of the unity of the first category by x_{0}.

Definition 2.4: Let x be a square root of unity modulo n. x is said to be initial if all prime factors of n divide $x-1$ except only one p_{i}, we said that x is associated with p_{i}. And we note :

$$
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots{\stackrel{\vee}{p_{i}}}_{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K
$$

where K is an integer not divisible by p_{i}.
Note that there exist two initial square roots of the unity associated with p_{i}, which are the solutions of the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=4 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=4 p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
\end{aligned}
$$

We remark that the solution of the first system is of the first category and that of second is of the second category. If we note by x_{i} the solution of the first system and y_{i} that of second, then $y_{i}=x_{i} x_{0}$. So the set $\left\{1, x_{0}, x_{i}, y_{i}\right\}$ is a subgroup of $\mathbf{G}_{2}(n)$, which we denote by $\mathbf{G}_{2}^{p_{i}}(n)$.
The set formed by 1 and x_{i} (the initial square root of the unity of the first category associated with p_{i}) is a cyclic subgroup of order 2 , which we denote by $\mathbf{G}_{2}^{+}(n)$ and we have the following isomorphism :

$$
\mathbf{G}_{2}^{p_{i}}(n) \simeq{\stackrel{+}{p_{i}}}_{2}(n) \times \mathbf{G}_{2}^{0}(n)
$$

More generally, we have the following result :
Theorem 2.3: The map

$$
\begin{aligned}
{\stackrel{+}{\mathbf{p}_{1}}}_{p_{2}}(n) \times \ldots \times \mathbf{G}_{2}^{+}(n) \times \mathbf{G}_{2}^{0}(n) & \longrightarrow \mathbf{G}_{2}(n) \\
\left(x_{1}, \ldots, x_{m}, y\right) & \longmapsto x_{1} \cdot x_{2}, \ldots x_{m} . y
\end{aligned}
$$

is an isomorphism of groups.

Proof:

It's clear that φ is an morphism of groups. For showing that φ is an isomorphism, we should prove that φ is injective and
we conclude by cardinality.
We have $\varphi\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)=1 \Longleftrightarrow x_{1} \cdot x_{2}, \ldots x_{m} \cdot y=1$, if we suppose that there exists an integer i such that $x_{i} \neq 1$, then p_{i} does not divides $x_{i}-1$. Since if $j \neq i$ then p_{i} divides $x_{j}-1$ and p_{i} divides y. Therefore $x_{1} \cdot x_{2}, \ldots x_{m} . y-1$ is not divisible by p_{i}, that is absurd. Thus $x_{i}=1$ for all i. Finally we have $y=1$, therefore φ is injective.

Remark :

From the previous theorem, we can see that :

$$
\mathbf{G}_{2}(n)=\left\{\prod_{i \in I} x_{i} \quad, \text { avec } I \subset\{1,2, . ., m\}\right\} \times\left\{1, x_{0}\right\}
$$

and we can also show that $x_{0} \prod_{i=1}^{m} x_{i}=-1$.
Corollary 2.3: With the previous notations, we have :

$$
\mathbf{G}_{2}(n)=<x_{0}, x_{1}, x_{2}, \ldots, x_{m}>
$$

Now we give an algorithm in MAPLE that computes the x_{i} i.i.e. a generating set of $\mathbf{G}_{2}(n)$. x_{0} is computed from the relation $x_{0}=n / 2+1$. The other x_{i} are computed in the same way as the previous case.

```
Gene_2:= proc(n) local LB,i,LFact,GEN;
GEN:= [ ];LB:= [ ];
GEN:= [op(GEN),n/2+1];
LFact:= ifactors(n/4)[2];
for i from 1 to nops(LFact) do
LB:= Bezout(LFact[i][1]^LFact[i][2],
n/(LFact[i][1]^}\mathrm{ LFact[i][2]), 2);
GEN := [op(GEN),LB[1]*
LFact[i][1]`LFact[i][2]-1 mod n];
end:
eval(GEN);
end:
```

Algorithm 1.3

An application example :

To find the generators of the group of square root of the unity modulo $4 \times 11 \times 13 \times 17$, we can use the previous algorithm with the command
Gene_2(4*11*13*17);

We have the following result [4863, 4421, 6733,3433$]$, that is the list of generators. We note that the first value of the given list is the second trivial square root of the unity.

Case 4: $\alpha \geq 3$
Let $n \geq 3$ be an integer such that its primary decomposition is $n=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $\alpha \geq 3$.
If all α_{i} are null, then $n=2^{\alpha}$ with $\alpha \geq 3$. Recall that $(\mathbb{Z} / n \mathbb{Z})^{*}$ is not cyclic and its cardinal is $n / 2$. Let x be an element of $(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $x^{2}=1$, that is 2^{α} divides $x^{2}-1=(x-1)(x+1)$. We have $G C D(x-1, x+1)=2$,
therefore $2^{\alpha-1}$ divides $(x-1)$ or $(x+1)$. So x is the solution of one of the following systems :

$$
\left\{\begin{array}{l}
x-1=2^{\alpha-1} K_{1} \\
x+1=K_{2}
\end{array} ;\left\{\begin{array}{l}
x-1=K_{1}^{\prime} \\
x+1=2^{\alpha-1} K_{2}^{\prime}
\end{array}\right.\right.
$$

The first system has two solutions which are 1 and $2^{\alpha-1}+1$, the second system has two solutions which are -1 and $2^{\alpha-1}-1$. It's clear that all of the previous solutions are square roots of the unity. We have the following result :

Proposition 2.5: Let $n=2^{\alpha}$ with $\alpha \geq 3$, then

$$
\mathbf{G}_{2}(n)=\{1, n / 2-1, n / 2+1,-1\}
$$

Remark :
We remark that $(n / 2-1)(n / 2+1)=\left(2^{\alpha-1}-1\right)\left(2^{\alpha-1}+1\right)=$ -1 , therefore

$$
\mathbf{G}_{2}(n)=<n / 2-1, n / 2+1>.
$$

Now we suppose that $n=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $\alpha \geq 3$ and at least one of the α_{i} is not null. Let x be an element of $(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $x^{2}=1$. Since $G C D(x-1, x+1)=2$, then x is the solution of one of the following systems :

$$
\begin{gathered}
\left\{\begin{array}{c}
x-1=2^{\alpha-1} p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}
\end{array}\right. \\
\left\{\begin{array}{l}
x-1=p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}^{\prime} \\
x+1=2^{\alpha-1} p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}^{\prime}
\end{array}\right.
\end{gathered}
$$

where σ is a permutation of the set $\{1,2, . ., m\}$. It's clear that each of these systems has two solutions modulo n and each system of this form gives a square root of the unity modulo n, because x is odd. We shows also that a two different systems give distinct solutions. Therefore, the number of square roots of the unity modulo n is four times the number of partitions of the set $\{1,2, . ., m\}$, that is 2^{m+2}. Hence, we have the following result:

Proposition 2.6: Let $n \geq 3$ be an odd integer, then

$$
\operatorname{Ord}\left(\mathbf{G}_{2}\left(2^{\alpha} n\right)\right)=2^{\omega(n)+2} \quad \text { with } \alpha \geq 3
$$

For simplicity throughout this section we take $n \geq 3$ to be an integer and $n=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}(\alpha \geq 3)$ its primary decomposition with at least one of the α_{i} is not null. Now we begin to study $\mathbf{G}_{2}(n)$. Consider the following systems:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1} \\
x+1=K_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}^{\prime} \\
x+1=2^{\alpha-1} K_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

It's clear that the first system has two solutions modulo n and 1 is one of these solutions, we note by y_{0} the other solution. Also the second system has two solutions modulo n, denoted
by y_{1} and y_{2}.
We have:

$$
y_{0}=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}+1=n / 2+1
$$

and $y_{2}=y_{1}+2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$, therefore $y_{2} y_{1}=1+$ $2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} y_{1}$. Since y_{1} is odd, then $y_{2} y_{1}=y_{0}$ and $y_{2}=y_{1} y_{0}$.
So, the set $\left\{1, y_{0}, y_{1}, y_{2}\right\}$ is a subgroup of $\mathbf{G}_{2}(n)$, which is noted by $\mathbf{G}_{2}^{0}(n)$. Finally remark that :

$$
\mathbf{G}_{2}^{0}(n)=\left\{1, y_{0}\right\} \times\left\{1, y_{1}\right\}
$$

Definition 2.5: Let x be a square root of the unity modulo n, We said that x is of the first category if 2^{α} divides $x-1$, else we said that x is of the second category.

Remark :
Let $x \in \mathbf{G}_{2}^{0}(n)$, then x is of the first category if and only if $x=1$.

Definition 2.6: Let x be a square root of unity modulo n. x is said to be initial if all prime factors of n divide $x-1$ except only one p_{i}, we said that x is associated with p_{i}. And we note:

$$
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K ~}{\text {. }}
$$

where K is an integer not divisible by p_{i}.
Note that the initial square roots of the unity associated with p_{i} are the solutions of the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=2^{\alpha-1} p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
\end{aligned}
$$

Since each of these system has two solutions modulo n, therefore there exist 4 initial square roots of the unity associated with p_{i}.

Proposition 2.7: Let the system :

$$
\left\{\begin{array}{l}
x-1=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

If we denote by x_{1} and x_{2} the solutions of this system, then $x_{1}=y_{0} \cdot x_{2}$.

Proof :
We have $x_{1}=x_{2}+2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$, therefore $x_{1} \cdot x_{2}=1+2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} x_{2}$. Since x_{2} is odd, then $x_{1} \cdot x_{2}=y_{0}$ it follows that $x_{1}=x_{2} \cdot y_{0}$.

Remark :

In the same way, we show that the product of the solutions of the following system:

$$
\left\{\begin{aligned}
x-1 & =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K \\
x+1 & =2^{\alpha-1} p_{i}^{\alpha_{i}} K^{\prime}
\end{aligned}\right.
$$

is equal to y_{0}.
Proposition 2.8: there exists an only initial square root of the unity associated with p_{i} and of the first category.

Proof:
Indeed, this square root of the unity is the only solution of the system

$$
\left\{\begin{array}{l}
x-1=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{m}^{\alpha_{m}} K \\
x+1
\end{array}=p_{i}^{\alpha_{i}} K^{\prime} \quad,\right.
$$

We denote by ${\stackrel{+}{G_{2}}}_{p_{i}}(n)$, the cyclic subgroup of order 2 which is formed by 1 and the initial square root of the unity associated with p_{i} and of the first category.

Proposition 2.9: Let us consider these systems :

$$
\begin{gather*}
\left\{\begin{array}{c}
x-1=2^{\alpha-1} p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1} \\
x+1=p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}}
\end{array}\right. \tag{1}\\
\left\{\begin{array}{l}
x-1=p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}^{\prime} \\
x+1=2^{\alpha-1} p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K_{2}^{\prime}
\end{array}\right. \tag{2}
\end{gather*}
$$

where σ is a permutation of the set $\{1,2, . ., m\}$, then the product of each solution of (1) by y_{1} or y_{2} is a solution of (2).

Proof:

Let x be a solution of (1). suppose that x is of the first category, that is

$$
x=1+2^{\alpha} p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}
$$

Therefore

$$
\begin{aligned}
y_{1} \cdot x= & \left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K\right) \cdot(1+ \\
& \left.2^{\alpha_{0}} p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}} K_{1}\right) \\
= & 1+p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(s)}^{\alpha_{\sigma(s)}}\left(2^{\alpha} K_{1}+\right. \\
& p_{\sigma(s+1)}^{\left.\alpha_{\sigma(s+1)} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K\right)+n K^{\prime \prime} .}
\end{aligned}
$$

 then $2^{\alpha-1}, p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}}, p_{\sigma(s+2)}^{\sigma(s+2)} \ldots$ et $p_{\sigma(m)}^{\alpha_{\sigma(m)}}$ does not divide $2^{\alpha} K_{1}+p_{\sigma(s+1)}^{\alpha_{\sigma(s+1)}^{\alpha(s+1)}} p_{\sigma(s+2)}^{\sigma(s+2)} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} K$. Hence $y_{1} \cdot x$ is a solution of (2).
If z is the other solution of (1), then $z=y_{0} \cdot x$. Thus,

$$
z \cdot y_{1}=y_{0} \cdot\left(x \cdot y_{1}\right)
$$

Since $\left(x . y_{1}\right)$ is a solution of (2), therefore $z . y_{1}$ is also a solution of (2).
Finally, remark that reasoning is also valid to y_{2}.
If we denote by $\mathbf{G}_{2}^{p_{i}}(n)$ the set which is formed by the initial square roots of the unity associated with p_{i} and with the elements of $\mathbf{G}_{2}^{0}(n)$, then we have the following result:

Corollary 2.4: $\mathbf{G}_{2}^{p_{i}}(n)$ is a group and we have :

$$
\mathbf{G}_{2}^{p_{i}}(n) \simeq \mathbf{G}_{2}^{p_{i}}(n) \times \mathbf{G}_{2}^{0}(n) .
$$

Proof:
The initial square roots of the unity associated with p_{i} are the solutions of the following systems :

$$
\begin{align*}
& \left\{\begin{array}{l}
x-1=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K \\
x+1=2^{\alpha-1} p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right. \tag{2}
\end{align*}
$$

We deduce that $\operatorname{Ord}\left(\mathbf{G}_{2}^{p_{i}}(n)\right)=8$.
From the previous proposition, we know that the solutions of (2) are the product of the solutions of (1) by y_{1}. If we note by x a solution of (1), then the solutions of (1) are x and $x . y_{0}$. So, the initial square roots of the unity associated with p_{i} are $\left\{x, x . y_{0}, x . y_{1}, x . y_{0} . y_{1}\right\}$, it follows :

$$
\mathbf{G}_{2}^{p_{i}}(n)=\left\{1, y_{0}, y_{1}, y_{1} \cdot y_{0}, x, x . y_{0}, x \cdot y_{1}, x . y_{0} \cdot y_{1}\right\} .
$$

And obviously, we have

$$
\mathbf{G}_{2}^{p_{i}}(n) \simeq \mathbf{G}_{2}^{p_{i}}(n) \times \mathbf{G}_{2}^{0}(n)
$$

More generally, we have the following result :
Theorem 2.4: The map

$$
\begin{aligned}
& \stackrel{+}{p_{1}}(n) \times \ldots \times{\stackrel{\mathbf{G}_{2}^{p_{2}}}{p_{m}}(n) \times \mathbf{G}_{2}^{0}(n)}^{\mathbf{G}_{2}}(n) \times \mathbf{G}_{2}(n) \\
&\left(x_{1}, \ldots, x_{m}, y\right) \longmapsto \\
& x_{1}, \ldots x_{m} \cdot y
\end{aligned}
$$

is an isomorphism of groups.

Proof :

In the same way as the previous theorem, we show that φ is an injective morphism of groups and we conclude by cardinality.

Remark :

The group $\mathbf{G}_{2}^{0}(n)$ is not cyclic, but we have $\mathbf{G}_{2}^{0}(n)=\left\{1, y_{0}\right\} \times\left\{1, y_{1}\right\}$, thus :

Finally we have the following result :
Corollary 2.5: As it is noted above, we have

$$
\mathbf{G}_{2}(n)=<y_{0}, y_{1}, x_{1}, x_{2}, \ldots, x_{m}>.
$$

Now we give an algorithm in MAPLE that computes x_{i}, y_{0} and y_{1},i.e. a generating set of $\mathbf{G}_{2}(n)$.
The solution y_{0} is computed by the formula $y_{0}=n / 2+1$ and y_{1} is a solution of the system :

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}^{\prime} \\
x+1=2^{\alpha-1} K_{2}^{\prime}
\end{array}\right.
$$

we will choose that satisfied this system

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1} \\
x+1=2^{\alpha} K_{2}
\end{array}\right.
$$

Since (\star) implies that $2^{\alpha} K_{2}-\left(n / 2^{\alpha}\right) K_{1}=2$, so we get K_{2} and K_{1} with the Bezout algorithm. Therefore $y_{1}=2^{\alpha} K_{2}-$ $1+n / 2$.
The other x_{i} are computed in the same way as the previous case.

```
Gene_2 := proc(n) local a,LB,i,LFact,GEN;
GEN:= [ ];LB:= [ ];
a:= ifactors(n)[2][1][2];
GEN := [op(GEN),n/2 + 1];
LB:= Bezout (2^a,n/(2^a), 2);
GEN := [op(GEN),LB[1]* 2^a - 1 +
n/2 mod n];
LFact := ifactors(n/(2^a))[2];
for i from 1 to nops(LFact) do
LB:= Bezout(LFact [i][1]`LFact[i][2],
n/(LFact[i][1] LFact[i][2]), 2);
GEN := [op(GEN),LB[1]*
LFact[i][1]^LFact[i][2] - 1 mod n];
end:
eval(GEN);
end:
```


Algorithm 1.4

An application example :
To find the generators of the group of square root of the unity modulo $8 \times 11^{2} \times 13$, we can use the previous algorithm with this command :
Gene_2(8*11^2*13);

We have the following result [4863, 4421, 6733,3433$]$, that is the list of generators. We note that the first value of the given list is y_{0}, and the second is y_{1}.

Remark :
The choice of y_{1} allows us to have :

$$
y_{0} \cdot y_{1} \prod_{i=1}^{m} x_{i}=-1
$$

ISSN: 2517-9934
Vol:3, No:7, 2009

Indeed, $y_{0} . y_{1}$ is the solution of (\star). Therefore

$$
\begin{aligned}
y_{0} \cdot y_{1} \prod_{i=1}^{m} x_{i}= & \left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}\right) \prod_{i=1}^{m}(1+ \\
& \left.2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K_{i}\right) \\
= & \left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}\right)(1+ \\
& \left.\sum_{i=1}^{m} 2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K_{i}+K n\right) \\
= & 1+\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}+\right. \\
& \left.\sum_{i=1}^{m} 2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K_{i}\right]+\mathbf{K} n
\end{aligned}
$$

It's clear that the term between the brackets is not divisible by $2^{\alpha-1}, p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}} \ldots, p_{m}^{\alpha_{m}}$. So, $y_{0} \cdot y_{1} \prod_{i=1}^{m} x_{i}$ is a solution of this system

$$
\left\{\begin{array}{l}
x-1=K_{1} \\
x+1=2^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{2}
\end{array}\right.
$$

Since the solutions of this system are -1 and $(n / 2-1)$. To conclude, just shows that 2^{α} divides $y_{0} . y_{1} \prod_{i=1}^{m} x_{i}+1$.
We have

$$
y_{0} \cdot y_{1} \prod_{i=1}^{m} x_{i}+1=\left(y_{0} \cdot y_{1}+1\right) \prod_{i=1}^{m} x_{i}-\left(\prod_{i=1}^{m} x_{i}-1\right)
$$

so it's clear that $\left(y_{0} \cdot y_{1}+1\right)$ is divisible by 2^{α} because $y_{0} \cdot y_{1}$ is solution of (\star), and $\prod_{i=1}^{m} x_{i}-1=\sum_{i=1}^{m} 2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{m}^{\alpha_{m}} K_{i}+K n, \quad$ thus $\prod_{i=1}^{m} x_{i}-1$ is divisible by 2^{α} it follow that 2^{α} divides $y_{0} \cdot y_{1} \prod_{i=1}^{m} x_{i}+1$.
Now we give an explicit formula for y_{1} in special cases.
Proposition 2.10: Let n be an integer of the form $8 b$, with b is an odd positive integer, then :

- $y_{1}=n / 4+1$ if $b \equiv 1[4]$.
- $y_{1}=3 n / 4+1$ if $b \equiv 3[4]$.

Proof:

- On the first hand, we have $(n / 4+1)^{2}=(2 p+1)^{2}=$ $1+4 p(p+1)$, and since 2 divides $p+1$, then n divides $4 p(p+1)$. Hence $(n / 4+1)^{2}=1$.
On the other hand, $(n / 4+1)-1=n / 4$ is divisible by all the prime factors of n. Since $(n / 4+1)+1=2(p+1)$ and $b \equiv 1[4]$, then $p+1$ is divisible by 2 and not by 4 . Thus $(n / 4+1)+1$ is divisible by 4 and not by 8 , hence the result.
- We will show this point in the same way.

Proposition 2.11: Let n be an integer of the form $2^{\alpha} b$ with b is an odd positive integer and $\alpha \geq 3$. if $b \equiv 1\left[2^{\alpha-1}\right]$, the
solution of (\star) is :

$$
y_{2}=\frac{\left(2^{\alpha-1}-1\right) n}{2^{\alpha-1}}+1
$$

Therefore

$$
y_{1}=\frac{\left(2^{\alpha-2}-1\right) n}{2^{\alpha-1}}+1
$$

Proof:
We have

$$
\begin{aligned}
y_{2}^{2} & =\left(2 b\left(2^{\alpha-1}-1\right)+1\right)^{2} \\
& =1+4 b^{2}\left(2^{\alpha-1}-1\right)^{2}+4 b\left(2^{\alpha-1}-1\right) \\
& =1+4 b\left(2^{\alpha} b\left(2^{\alpha-2}-1\right)+2^{\alpha-1}+b-1\right) .
\end{aligned}
$$

Since $2^{\alpha-1}$ divides $b-1$, then n divides $4 b\left(2^{\alpha} b\left(2^{\alpha-2}-1\right)+\right.$ $2^{\alpha-1}+b-1$), therefore $y_{2}^{2}=1$.
It's clear that all the prime factors of n divide $y_{2}-1$. On the other hand, $y_{2}+1=2 b\left(2^{\alpha-1}-1\right)+2=2^{\alpha} b-2(b-1)$, then 2^{α} divides $y_{2}+1$. So, y_{2} is solution of (\star).
We know that $y_{1}=y_{2}-n / 2$, it follows the expression of y_{1}.

III. Conclusion

For the cardinal of $\mathbf{G}_{2}(n)$, we have the following theorem :
Theorem 3.1: Let $n \geq 3$ be an odd integer, then :

- $\operatorname{Ord}\left(\mathbf{G}_{2}(n)\right)=2^{\omega(n)}$
- $\operatorname{Ord}\left(\mathbf{G}_{2}(2 n)\right)=2^{\omega(n)}$
- $\operatorname{Ord}\left(\mathbf{G}_{2}(4 n)\right)=2^{\omega(n)+1}$
- $\operatorname{Ord}\left(\mathbf{G}_{2}\left(2^{\alpha} n\right)\right)=2^{\omega(n)+2}$ with $\alpha \geq 3$
where $\omega(n)$ is the number of distinct prime factors of n. Now we give an algorithm that computes a generating set for $\mathbf{G}_{2}(n)$, where n is an integer.

Gene_2 := proc(n) local a,LB, i,LFact,GEN;
$G E N:=[] ; L B:=[] ;$
$i f(n \bmod 2=1)$ then
LFact :=ifactors(n)[2];
for i from 1 to nops(LFact) do
$L B:=\operatorname{Bezout}\left(\operatorname{LFact}[i][1]{ }^{\wedge}\right.$ LFact $[i][2]$,
$n /($ LFact $[i][1] \sim$ LFact $[i][2]), 2)$;
$G E N:=[o p(G E N), L B[1] *$
LFact $[i][1]^{\wedge}$ LFact $\left.[i][2]-1 \bmod n\right]$;
end :
$\operatorname{eval}(G E N)$;
else
$a:=$ ifactors $(n)[2][1][2] ;$
if $a=1$ then
LFact :=ifactors(n)[2];
for i from 1 to nops(LFact) do
$L B:=\operatorname{Bezout}\left(\operatorname{LFact}[i][1]^{\wedge} \operatorname{LFact}[i][2]\right.$,
$n /($ LFact $[i][1] \sim$ LFact $[i][2]), 2)$;
$G E N:=[o p(G E N), L B[1] *$
LFact $\left.[i][1]^{\wedge} L F a c t[i][2]-1 \bmod n\right]$;
end:
$\operatorname{eval}(G E N)$;
elifa $=2$ then
$G E N:=[o p(G E N), n / 2+1] ;$

LFact :=ifactors(n/4)[2];
for i from 1 to nops (LFact) do
$L B:=\operatorname{Bezout}\left(\operatorname{LFact}[i][1]^{\wedge} \operatorname{LFact}[i][2]\right.$,
$n /($ LFact $[i][1] \sim$ LFact $[i][2]), 2)$;
$G E N:=[o p(G E N), L B[1] *$
LFact $[i][1]^{\wedge}$ LFact $\left.[i][2]-1 \bmod n\right]$;
end:
$\operatorname{eval}(G E N)$;
else
$G E N:=[o p(G E N), n / 2+1] ;$
$L B:=\operatorname{Bezout}(2$ a $a, n /(2$ 2a), 2);
$G E N:=[o p(G E N), L B[1] * 2$ - $a-1$
$+n / 2 \bmod n]$;
LFact $:=$ ifactors $\left(n /\left(2^{\wedge} a\right)\right)[2]$;
for i from 1 to nops(LFact) do
$L B:=\operatorname{Bezout}\left(\operatorname{LFact}[i][1]^{\wedge} \operatorname{LFact}[i][2]\right.$,
$n /($ LFact $[i][1] \sim$ LFact $[i][2]), 2)$;
$G E N:=[o p(G E N), L B[1] *$
LFact $[i][1]^{\wedge}$ LFact $\left.[i][2]-1 \bmod n\right] ;$
end:
$\operatorname{eval}(G E N)$;
end :
end:
end:
Algorithm 1.5

Complexity of the algorithm :
It's clear that the complexity of the Algorithm $\mathbf{1 . 5}$ is the same as the Algorithm 1.1. Recall that the number of distinct prime factors of a number n is denoted $\omega(n)$. We know that $\omega(n)=O(\ln (\ln n))$ (see [9] and [10]), and the complexity of the Extended Euclidean algorithm is $O\left(n^{2} n\right)$ (see [3] and [4]). Therefore the complexity of Algorithm 1.1 without the factorization is $O\left(\ln (\ln n) \ln ^{2} n\right)$.

References

[1] J-P. Serre, A Course in Arithmetic. Graduate Texts in Mathematics, Springer, 1996
[2] S. Lang, Undergraduate Algebra, 2nd ed. UTM. Springer Verlag, 1990
[3] H. Cohen, A course in computational algebraic number theory. Springer-Verlag, 1993.
[4] V. Shoup, A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2005.
[5] David M. Bressoud, Factorization and Primality Testing. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989.
[6] E. Bach, A note on square roots in finite fields. IEEE Trans. Inform. Theory, 36(6):1494-1498, 1990. Eric
[7] E. Bach and K. Huber, Note on taking square-roots modulo N. IEEE Transactions on Information Theory, 45(2):807809, 1999.
[8] D. Shanks, Five number-theoretic algorithms. In Proc. Second Munitoba Conf. Numerical Math. 51-70, 1972.
[9] Hardy, G. H, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999. G. H.
[10] Hardy and E. M.Wright, An introduction to the theory of numbers, 4th ed. Oxford University Press, 1960.

