Group of p -th roots of unity modulo n

Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract

Let $n \geq 3$ be an integer and p be a prime odd number.

 Let us consider $\mathbf{G}_{p}(n)$ the subgroup of $(\mathbb{Z} / n \mathbb{Z})^{*}$ defined by :$$
\mathbf{G}_{p}(n)=\left\{x \in(\mathbb{Z} / n \mathbb{Z})^{*} / x^{p}=1\right\}
$$

In this paper, we give an algorithm that computes a generating set of this subgroup.

Keywords-Group, p-th roots, modulo, unity.

I. Introduction

LET $n \geq 3$ be an integer, recall that $(\mathbb{Z} / n \mathbb{Z})^{*}$ denotes the group of units of the ring $(\mathbb{Z} / n \mathbb{Z})$. For more details on the structure of $(\mathbb{Z} / n \mathbb{Z})^{*}$ see [2], [3] and [4].
The group $(\mathbb{Z} / n \mathbb{Z})^{*}$ has several applications, the most important is cryptography, that is RSA cryptosystem (see [7]). The security of the RSA cryptosystem is based on the problem of factoring large integers and the task of finding e-th roots modulo a composite number n whose factors are not known.

Let p be a prime odd number, we notice by $\mathbf{G}_{p}(n)$ the part of $(\mathbb{Z} / n \mathbb{Z})^{*}$ formed by the elements x that verify $x^{p}=1$. We can easily prove that $\mathbf{G}_{p}(n)$ is a subgroup of $(\mathbb{Z} / n \mathbb{Z})^{*}$ which contains exactly the unity and the elements of order p.
Remember also that these elements of order p in $(\mathbb{Z} / n \mathbb{Z})^{*}$ exist if and only if p divides $\lambda(n)$, with λ is the Carmichael lambda function, otherwise $\mathbf{G}_{p}(n)$ is not reduced to $\{1\}$ if and only if p divides $\lambda(n)$.
The elements of $\mathbf{G}_{p}(n)$ other than 1 have the order p and so the order of $\mathbf{G}_{p}(n)$ is of the form p^{t} with t an integer. Then we obtain the following result:

Proposition :

Let $n \geq 3$ be an integer and p be a prime number, then there exists an integer t such as :

$$
\operatorname{Card}\left(\mathbf{G}_{p}(n)\right)=p^{t}
$$

with $t=0$ if and only if p does not divide $\lambda(n)$.
Our work consists to determine explicitly the integer t described in the preceding proposition and by giving at the same time with an effective manner the decomposition of $\mathbf{G}_{p}(n)$ in product of cyclic groups and give a generating family of this group. Finally, we give the algorithm written in Maple. The case $p=2$ is treated in [1] and in this article, our approach is the same as it. For more details about the algorithmic number theory see [5] and [6], and for introduction to Maple see [10].

II. P-TH ROOTS OF UNITY MODULO N

Let us consider an integer $n \geq 3$ and p a prime odd number, let $n=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ the decomposition of n in prime factors.
We know that the p-th roots of unity modulo n, which are nontrivial, exist if and only if p divides $\lambda(n)$, that is to say $\alpha \geq 2$ or there exists i such as p divides $p_{i}-1$.
Thus, in our study, we will distinguish these following cases $\alpha=0, \alpha=1$ and $\alpha \geq 2$, but before that we are going to give some results which will be useful thereafter.

Definition 2.1: Let $n \geq 3$ be an integer and p be a prime number, we denote $\alpha_{p}(n)$ the number of prime factors q of n such that p divides $q-1$.

Remark :

- $\alpha_{2}(n)$ is the number of prime odd factors of n.
- The function α_{p} is additive, that is to say if n and m are coprime numbers, then

$$
\alpha_{p}(m . n)=\alpha_{p}(m)+\alpha_{p}(n)
$$

and generally, for all the numbers not equal to $0, n$ and m we have:

$$
\alpha_{p}(m . n)=\alpha_{p}(m)+\alpha_{p}(n)-\alpha_{p}(G C D(m, n))
$$

In the following, we consider an integer $n \geq 3$ whose the factorization is $n=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$, with p a prime odd number dividing $\lambda(n)$.

Proposition 2.1: Let x be a p-th root of unity modulo n. If p does not divide $p_{i}-1$, then p_{i} divides $x-1$.

Proof:

We have $x^{p} \equiv 1[n] \Longrightarrow x^{p} \equiv 1\left[p_{i}\right]$ and thus the order of x in $\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{*}$ is 1 or p, but the order of x in $\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{*}$ divides $p_{i}-1$ and thus it cannot be p. Therefore $x \equiv 1\left[p_{i}\right]$ and then we obtain the result.

Now, we will ameliorate the precedent result with the following lemma:

Lemma 2.1:

$$
G C D\left(x-1,1+x+x^{2}+\ldots+x^{p-1}\right) \in\{1, p\}
$$

Proof:
One can easily verify that we have:

$$
\begin{array}{r}
(x-1)\left(x^{p-2}+2 x^{p-3}+3 x^{p-4}+\ldots+(p-2) x+(p-1)\right)- \\
\left(1+x+x^{2}+\ldots+x^{p-1}\right)=p
\end{array}
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934
 Vol:4, No:7, 2010

Corollary 2.1: Let x be a p-th root of unity modulo n. If p does not divide $p_{i}-1$ and $p \neq p_{i}$, then $p_{i}^{\alpha_{i}}$ divides $x-1$.

Proof:
We have $x^{p} \equiv 1[n] \Longrightarrow x^{p} \equiv 1\left[p_{i}^{\alpha_{i}}\right]$ then $p_{i}^{\alpha_{i}}$ divides $x^{p}-1=(x-1)\left(1+x+x^{2}+\ldots+x^{p-1}\right)$, or p does not divide $p_{i}-1$ and thus p_{i} divides $x-1$ also we know that the $G C D\left(x-1,1+x+x^{2}+\ldots+x^{p-1}\right) \in\{1, p\}$ and $p \neq p_{i}$, then $p_{i}^{\alpha_{i}}$ divides $x-1$.

If p divides n, that is to say $\alpha \geq 1$, and x is a p-th root of unity modulo n, then p divides $x^{p}-1=(x-1)\left(1+x+x^{2}+\ldots+x^{p-1}\right)$ and consequently p divides $x-1$ or $1+x+x^{2}+\ldots+x^{p-1}$ and seeing the relation given in the proof of Lemma 2.1 we conclude that p divides both at the same time, and thus

$$
P G C D\left(x-1,1+x+x^{2}+\ldots+x^{p-1}\right)=p .
$$

We are interested now in the case of $\alpha \geq 2$, we saw in [1] for $p=2$ that $2^{\alpha-1}$ divides $x-1$ or $x+1$, we are going to see that this result is not true for an odd prime p and more precisely we have the following result:

Proposition 2.2: Let x be a p-th root of unity modulo n $(\alpha \geq 2)$, then $p^{\alpha-1}$ divides $x-1$.

The case $\alpha=2$ is trivial, for $\alpha \geq 3$, one needs the following lemma:

Lemma 2.2: Let p be a prime odd number and x be an integer, then we have :

$$
x^{p} \equiv 1\left[p^{3}\right] \Longrightarrow x \equiv 1\left[p^{2}\right]
$$

Proof:
It is clear that $x^{p} \equiv 1\left[p^{3}\right] \Longrightarrow x \equiv 1[p]$, so $x=1+k p$ $\left(k \in \mathbb{N}\right.$) and consequently $x^{p} \equiv 1+p^{2} k\left[p^{3}\right]$ (this writing is possible because $p \geq 3$) moreover p^{3} divides $p^{2} k$, then p divides k and finally we obtain: $x \equiv 1\left[p^{2}\right]$.

Remark : Notice that the precedent lemma is not true for $p=2$, for instance $3^{2} \equiv 1[8]$ and $3 \not \equiv 1[4]$.

Proof of Proposition 2.2:

We have $x^{p} \equiv 1\left[p^{\alpha}\right](\alpha \geq 3)$ and so in particulary $x^{p} \equiv 1\left[p^{3}\right]$, from the precedent lemma we conclude that $x \equiv 1\left[p^{2}\right]$.
We have p^{α} divides $x^{p}-1=(x-1)\left(1+x+x^{2}+\ldots+x^{p-1}\right)$ and as $P G C D\left(x-1,1+x+x^{2}+\ldots+x^{p-1}\right)=p$ besides p^{2} divides $x-1$, so $p^{\alpha-1}$ divides $x-1$.

Remark :

The precedent proposition shows that $p^{\alpha-1}$ divides $x-1$, but this does not mean that the p -adic valuation of $x-1$ is $\alpha-1$ and this is proved by the following examples.

An application example :

- $n=7^{3} * 29=9947$, we have $344^{7} \equiv 1[n]$ and $344 \equiv 1\left[7^{3}\right] .2402^{7} \equiv 1[n]$ and $2402 \equiv 1\left[7^{4}\right]$.
- $n=7^{2} * 29 * 43 * 71=4338313$, we have $350547^{7} \equiv 1[n]$ and $350547 \equiv 1\left[7^{4}\right]$.

Let us return to our principal aim, which is the study of the group $\mathbf{G}_{p}(n)$, we begin by the case $\alpha=0$.

Case 1: $\alpha=0$

Let n be an integer whose decomposition into prime factors is $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $p_{i} \neq p$ for all i. Let x be a p-th root of unity modulo n, we have shown in the above results that if p does not divide $p_{i}-1$, then $p_{i}^{\alpha_{i}}$ divides $x-1$. The condition p divides $\lambda(n)$ implies that it exists at least an integer i such that p divides $p_{i}-1$, let σ be a permutation of the set $\{1,2, . ., m\}$ such that $n=p_{\sigma_{\sigma(1)}}^{\alpha_{\sigma(1)}} p_{\sigma_{\alpha(2)}}^{\alpha_{\alpha_{\sigma(2)}}^{\alpha_{(2)}}} \ldots p_{\sigma(d)}^{\alpha_{\sigma(d)}} p_{\sigma_{\sigma(d+1)}}^{\alpha_{\alpha(d+1)}} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}}$ and p divides only $p_{\sigma(1)}^{\alpha_{\sigma(1)}}, p_{\sigma(2)}^{\alpha_{\sigma}(2)} \ldots$ and $p_{\sigma(d)}^{\alpha_{\sigma(d)}}$, then $p_{\sigma(d+1)}^{\alpha_{\sigma(d+1)}} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}}$ divides $x-1$.
We start our study by the following theorem:
Theorem 2.1: Let n be an integer whose decomposition in prime factors is $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $p_{i} \neq p$ for all i and p divides only $p_{1}-1$, then $\mathbf{G}_{p}(n)$ is a cyclic subgroup of $(\mathbb{Z} / n \mathbb{Z})^{*}$ of order p.

Proof :

Let x be a p-th root of unity modulo n, we have $p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ divides $x-1$, then x is a solution of one of the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1}^{\alpha_{1}} K^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{c}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=K^{\prime}
\end{array}\right.
\end{aligned}
$$

Clearly, 1 is the unique solution of the second system. Now, we will show that the first system have exactly $p-1$ solutions, which follows immediately from the two following lemmas.

Lemma 2.3: The systems

$$
\begin{align*}
& \left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1}^{\alpha_{1}} K^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1} K^{\prime}
\end{array}\right. \tag{**}
\end{align*}
$$

have the same number of solutions respectively modulo n and $n / p_{1}^{\alpha_{1}-1}$.

Proof :
It is clear that any solution of (\star) is a solution of $(\star \star)$. Reciprocally let x be a solution of ((\star), then $x^{p} \equiv 1\left[p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}\right]$
that is to say $x^{p}=1+p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}$ and therefore

$$
\begin{aligned}
x^{p p_{1}^{\alpha_{1}-1}}= & \left(1+p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}\right)^{p_{1}^{\alpha_{1}-1}} \\
= & 1+\sum_{i=1}^{p_{1}^{\alpha_{1}-1}-1} \mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}\left(p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}\right)^{i}+ \\
& \left(p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{1}\right)^{p_{1}^{\alpha_{1}-1}}
\end{aligned}
$$

It is easily verified that all $\mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}$ are divisible by $p_{1}^{\alpha_{1}-1}$ and $p_{1}^{\alpha_{1}-1} \geq \alpha_{1}$, then $x^{p p_{1}^{\alpha_{1}-1}} \equiv 1[n]$. From the other hand

$$
\begin{aligned}
x^{p_{1}^{\alpha_{1}-1}}= & \left(1+p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K\right)^{p_{1}^{\alpha_{1}-1}} \\
= & 1+\sum_{i=1}^{p_{1}^{\alpha_{1}-1}-1} \mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}\left(p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K\right)^{i}+ \\
& \left(p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K\right)^{p_{1}^{\alpha_{1}-1}}
\end{aligned}
$$

and as the $\mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}$ are divisible by p_{1} and K is not divisible by p_{1}, then $x^{p_{1}^{\alpha_{1}-1}}{ }_{\alpha_{1}}$ is divisible by all the p_{i} except p_{1} and consequently $x^{p_{1}^{\alpha_{1}-1}}$ is a solution of (\star).
Let x and y be two solutions of ($* *$) such as $x^{p_{1}^{\alpha_{1}-1}}=y^{p_{1}^{\alpha_{1}-1}}[n]$ and thus $x^{p_{1}^{\alpha_{1}-1}}=y^{p_{1}^{\alpha_{1}-1}}\left[p_{1}\right]$, hence $x \equiv y\left[p_{1}\right]$, on the other hand it is clear that $x \equiv y\left[p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}\right]$ and consequently $x \equiv y\left[p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}\right]$.
We therefore conclude that the number of solutions of (\star) is greater than or equal to that of $(\star \star)$. Thus the systems (\star) and ($* *$) have the same number of solutions modulo n and $n / p_{1}^{\alpha_{1}-1}$ respectively.

Lemma 2.4: The following system

$$
\left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1} K^{\prime}
\end{array}\right.
$$

has $p-1$ solutions modulo $n / p_{1}^{\alpha_{1}-1}$.

Proof:

We know that $\mathbb{Z} / p_{1} \mathbb{Z}$ is the field of decomposition of the polynomial $X^{p_{1}}-X$, and more precisely we have :

$$
X^{p_{1}}-X=\prod_{i=0}^{p_{1}-1}(X-i)
$$

and therefore

$$
X^{p_{1}-1}-1=\prod_{i=1}^{p_{1}-1}(X-i)
$$

and as p divides $p_{1}-1$ then the polynomial $X^{p}-1$ divides $X^{p_{1}-1}-1$ and therefore the polynomial $X^{p}-1$ is also a product of factors of degree 1 , that is to say

$$
X^{p}-1=\prod_{i=1}^{p}\left(X-\gamma_{i}\right)
$$

and as 1 is a root of $X^{p}-1$ then we take $\gamma_{1}=1$ and finally we obtain

$$
1+X+X^{2}+\ldots X^{p-1}=\prod_{i=2}^{p}\left(X-\gamma_{i}\right)
$$

and consequently the system $(\star \star)$ is equivalent to the following systems:

$$
\begin{aligned}
\left\{\begin{aligned}
x-1= & p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{2} \\
x-\gamma_{2}= & p_{1} K_{2}^{\prime}
\end{aligned}\right. & \left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{3} \\
x-\gamma_{3}=p_{1} K_{3}^{\prime}
\end{array}\right. \\
& \ldots\left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{p} \\
x-\gamma_{p}=p_{1} K_{p}^{\prime}
\end{array}\right.
\end{aligned}
$$

It is clear that each of these systems has only one solution modulo $p_{1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$. Also the solutions of these systems are 2 by 2 distinct. Indeed if we denote x_{i} the solution of the following system

$$
\left\{\begin{array}{l}
x-1=p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K_{i} \\
x-\gamma_{i}=p_{1} K_{i}^{\prime}
\end{array}\right.
$$

then $x_{i} \equiv \gamma_{i}\left[p_{1}\right]$. Since the γ_{i} are distinct modulo p_{1}, then the x_{i} are also distinct. We conclude that ($\star \star$) have $p-1$ solutions modulo $n / p_{1}^{\alpha_{1}-1}$.

Remark:

The proof of the previous theorem gives an algorithm for calculating the solutions of (\star), and this is done in two steps : Step 1
$\overline{\text { We resolve }}(\star \star)$, the most difficult point in this step is to determinate the γ_{i}. We must give the factorization of the polynomial $1+X+X^{2}+\ldots+X^{p-1}$ in the field $\mathbb{Z} / p_{1} \mathbb{Z}[X]$ and for this we can use Berlekamp's algorithm [8] or Cantor-Zassenhaus algorithm [9]. Then we decompose ($\star \star$) in small systems that are resolved easily with Euclidian's algorithm.

Step 2

To find the solutions of (\star), it is sufficient to see that they are also solutions of $(\star \star)$ set to the power $p_{1}^{\alpha_{1}-1}$ modulo n.

Note also that the set of solutions of (\star) forms with 1 a cyclic group of order p, then any solution of (\star) generates this group. Thus in practice it is sufficient to determine a solution of (\star) to find the others.

A sample calculation :
We want to determine the elements of order 7 modulo n with $n=10609215=29^{4} * 5 * 3$. The first step consists to give the factorization of $1+X+X^{2}+\ldots+X^{6}$ in the field $\mathbb{Z} / 29 \mathbb{Z}[X]$, by using Berlekamp's algorithm, we obtain :

$$
\begin{aligned}
& 1+X+X^{2}+\ldots+X^{6} \\
= & (X+4)(X+5)(X+6)(X+9)(X+13)(X+22) .
\end{aligned}
$$

Let's consider the following system

$$
\left\{\begin{array}{l}
x-1=15 K \\
x+4=29 K^{\prime}
\end{array}\right.
$$

which gives $29 K^{\prime}-15 K=5$, and by the euclidian algorithm we obtain $K^{\prime}=-5$ and $K=-10$.

Therefore $x=-149=286$ modulo $435=29 * 5 * 3$. Thereby $286^{29^{3}} \bmod n=1006441$ is an element of order 7 modulo n and consequently the elements of $\mathbf{G}_{7}(n)$ are

$$
\mathbf{G}_{7}(n)=\left\{1006441,1006441^{2}, \ldots, 1006441^{7}\right\}
$$

that is to say

$$
\begin{aligned}
& \mathbf{G}_{7}(n)=\{1006441,8684356,6860611,4797001, \\
& 5450251,9979951,1\}
\end{aligned}
$$

Now, we give an algorithm in MAPLE which allows us for any fixed integer n and a prime odd number p, as described in the last theorem, to give a generator of the cyclic group $\mathbf{G}_{p}(n)$.

Gene_p $:=\operatorname{proc}(n, p) \quad$ local LB, LD,P, gen,, LFact; $L D:=[] ; L B:=[] ;$
LFact $:=$ ifactors $(n)[2]$;
for i from 1 to nops(LFact) do
if $($ LFact $[i][1]-1 \bmod p=0)$ then
$L D:=[$ op $(L D), L F a c t[i]] ;$
end:
end:
$P:=\operatorname{convert}(\operatorname{Berlekamp}(\widehat{x p}-1, x) \bmod L D[1][1]$, list); if $(P[1]-x+1 \bmod L D[1][1]<>0)$ then
$L B:=\operatorname{Bezout}\left(L D[1][1], n /\left(L D[1][1]^{\wedge} L D[1][2]\right), P[1]-\right.$ $x+1$);
gen $:=((L D[1][1] * L B[1]-(P[1]-x) \bmod n)) \&^{\wedge}$
$\left(L D[1][1]^{\wedge}(L D[1][2]-1)\right) \bmod n$;
else
$L B:=\operatorname{Bezout}\left(L D[1][1], n /\left(L D[1][1]^{\wedge} L D[1][2]\right), P[2]-\right.$ $x+1$);
gen $:=(L D[1][1] * L B[1]-(P[2]-x) \bmod n) \not \&^{\wedge}$
$\left(L D[1][1]^{\wedge}(L D[1][2]-1)\right) \bmod n$;
end :
eval(gen);
end :
end :
Algorithm 2.1

Remark :

The Berlekamp's procedure used in this algorithm is predefined in MAPLE.

In the remainder of this paragraph, considering an integer n whose decomposition in prime factors is $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ and p a prime odd number such that $p_{i} \neq p$ for all i. For a fixed permutation we can write $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} p_{d+1}^{\alpha_{d+1}} \ldots p_{m}^{\alpha_{m}}$ with p divides $p_{i}-1$ for all $i \in\{1, . ., d\}$. We have seen that if x is a p-th root of unity modulo n, then $p_{d+1}^{\alpha_{d+1}} \ldots p_{m}^{\alpha_{m}}$ divides $x-1$. Thus $p_{d+1}^{\alpha_{d+1}} \ldots p_{m}^{\alpha_{m}}$ don't have a significant role in our study, for the rest we set $p_{d+1}^{\alpha_{d+1}} \ldots p_{m}^{\alpha_{m}}=A$.

Definition 2.2: Let x a p-th root of unity modulo n, we say that x is initial if all the $p_{i}, i \in\{1, . ., d\}$ divides $x-1$ except for only one p_{i}. We say that this p-th root is associated to p_{i}, and we write :

$$
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K}{ }
$$

with K is an integer not divisible par p_{i}.
We denote by $\mathbf{G}_{p}^{p_{i}}(n)$ the set formed by the unity and the initial p-th roots of unity associated to p_{i}, and we have the following theorem :

Theorem 2.2: $\mathbf{G}_{p}^{p_{i}}(n)$ is a cyclic subgroup of $\mathbf{G}_{p}(n)$ with cardinality p.

Proof:
The initial p-th roots of unity associated to p_{i} are the solutions of the system :

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K \\
1+x+x^{2}+. .+x^{p-1}=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

We saw in the foregoing that this system have $p-1$ solutions modulo n and then $\operatorname{Card}\left(\mathbf{G}_{p}^{p_{i}}(n)\right)=p$. Let's prove now that $\mathbf{G}_{p}^{p_{i}}(n)$ is a subgroup. Let x and y be two solutions of (\star), we have

$$
\begin{aligned}
& y-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
x . y & =1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A(K \\
& \left.+K^{\prime}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K K^{\prime}\right)
\end{aligned}
$$

Note that $x . y$ is a p-th root of unity and therefore at this stage we have two case. If p_{i} divides $\left(K+K^{\prime}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K K^{\prime}\right)$, then $p_{i}^{\alpha_{i}}$ divides $x . y-1$ and we obtain $x . y=1$. If p_{i} does not divide $\left(K+K^{\prime}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K K^{\prime}\right)$, then $x . y$ is an initial to p-th root of unity associated to p_{i}. It is clear that if x is a p-th root of unity, then its inverse $x^{-1}=x^{p-1}$ is an element of $\mathbf{G}_{p}^{p_{i}}(n)$. Whereof $\mathbf{G}_{p}^{p_{i}}(n)$ is a cyclic subgroup of $\mathbf{G}_{p}(n)$ because its cardinality is a prime number p.

Proposition 2.3: Let x and y be two initial p-th roots of unity associated to p_{i} and p_{j} with $i \neq j$, then $x . y$ is a p-th root of unity satisfying

$$
x . y-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee_{i}^{\alpha_{i}}} \ldots \stackrel{\vee p_{j}^{\alpha_{j}}}{V_{i}} . p_{d}^{\alpha_{d}} A K
$$

with K is an integer which is not divisible by p_{i} and p_{j}.
Proof:
We have

$$
\begin{gathered}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{d}^{\alpha_{d}} A K_{1} \text { and } \\
y-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{j}^{\alpha_{j}} \ldots p_{d}^{\alpha_{d}} A K_{2}
\end{gathered}
$$

and therefore
$x . y=1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}}}{\ldots} \stackrel{\vee p_{j}^{\alpha_{j}}}{ } \ldots p_{d}^{\alpha_{d}} A\left(p_{i}^{\alpha_{j}} K_{1}+p_{i}^{\alpha_{i}} K_{2}\right)$

ISSN: 2517-9934
Vol:4, No:7, 2010
and as p_{i} does not divide K_{1} also p_{j} does not divide K_{2}, then $\left(p_{i}^{\alpha_{j}} K_{1}+p_{i}^{\alpha_{i}} K_{2}\right)$ is not divisible by both p_{i} and p_{j}.

Definition 2.3: Let x be a p-th root of unity modulo n, we say that it is final if all the $p_{i}, i \in\{1, . ., d\}$ does not divide $x-1$, that is to say $x-1=A K$, with K an integer not divisible by any $p_{i}, i \in\{1, . ., d\}$.

Remark :

The existence of final p-th roots of unity modulo n is ensured by the preceding proposition, in fact if for all $i \in\{1, . ., d\}$ we take x_{i} an initial p-th root of unity associated to p_{i}, then $\prod_{i=1}^{d} x_{i}$ is a final p-th root of unity modulo n.

Definition 2.4: Let x and y be two p-th roots of unity modulo n, we say that y is a final conjugate of x if $x . y-1$ is not divisible by any of the $p_{i}, i \in\{1, . ., d\}$, that is to say $x . y$ is a final p-th root of unity modulo n.

Proposition 2.4: Any p-th root of unity modulo n have a final conjugate.

Proof :

If $x=1$ or x is a final p-th root of unity modulo n, then we have the result. When $d=1$, then a final p-th root of unity modulo n is also an initial p-th root of unity associated to p_{1} and thus all the p-th roots of unity distinct from 1 are final.
Now, we suppose that $d \geq 2$ and $x-1$ is divisible by a nonempty subset of p_{i} of cardinality $t<d$ and we can assume that, for a fixed permutation, this p_{i} are p_{1}, p_{2}, \ldots are p_{t} and thus

$$
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}} A K
$$

with K is an integer which is not divisible by any of the p_{i}, $i \in\{t+1, . ., d\}$. For all $i \in\{1, . ., t\}$ let x_{i} be an initial p-th root of unity associated to p_{i} and therefore
with K_{i} not divisible by p_{i}, and thus

$$
\begin{aligned}
& \prod_{i=1}^{t} x_{i}=\prod_{i=1}^{t}\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right) \\
& =1+p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A \sum_{i=1}^{t} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots v_{i}^{\vee_{i}} \ldots p_{t}^{\alpha_{t}} K_{i}+K^{\prime} n
\end{aligned}
$$

but $\sum_{i=1}^{t} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{t}^{\alpha_{t}} K_{i}$ is not divisible by any of the $p_{i}, i \in\{1, . ., t\}$ therefore $y=\prod_{i=1}^{t} x_{i}$ is a p-th root of unity satisfies $y=1+p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M$ with M an integer which is not divisible by $p_{i}, i \in\{1, \ldots, t\}$. So

$$
x . y=1+A\left(p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M+p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}} A K\right)
$$

It is clear that $\left(p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M+p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}} A K\right)$ is not divisible by any of the $p_{i}, i \in\{1, . ., d\}$, and hence the result.

Theorem 2.3: Let x be a final p-th root of unity modulo n, then it exists d integers $K_{1}, K_{2}, \ldots, K_{d}$ such as:

$$
x=1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee} \ldots p_{d}^{\alpha_{d}} A K_{i}
$$

and

$$
\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\ldots} p_{d}^{\alpha_{d}} A K_{i}\right)^{p}=1[n] \quad \forall 1 \leq i \leq d
$$

Proof:
Since $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots{\underset{\sim}{p}}_{d}^{\alpha_{d}}$ and $p_{d}^{\alpha_{d}}$ are coprime then it exists two integers $\widetilde{K}_{d}^{\prime}$ and \widetilde{K}_{d} such as

$$
1=p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} \widetilde{K}_{d}(\star)
$$

and therefore

$$
x-1=p_{d}^{\alpha_{d}} A K_{d}^{\prime}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p_{d}^{\alpha_{d}} A K_{d}}{ }
$$

with $K_{d}^{\prime}=((x-1) / A) \widetilde{K}_{d}^{\prime}$ and $K_{d}=((x-1) / A) \widetilde{K}_{d}$.
We have :

$$
\begin{aligned}
\left(x-p_{d}^{\alpha_{d}} A K_{d}^{\prime}\right)^{p}= & \left(x-(x-1) p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)^{p} \\
= & \left(a\left(1-p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)+p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)^{p} \\
= & \left(x p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} \widetilde{K}_{d}+p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)^{p} \\
= & \left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} \widetilde{K}_{d}\right)^{p}+\left(p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)^{p} \quad\left[p_{1}^{\alpha_{1}}\right. \\
& \left.p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}}\right] \\
= & 1\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}}\right] \quad \text { from }(\star)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
x-(x-1) p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime} & =1+(x-1)\left(1-p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right) \\
& =1[A]
\end{aligned}
$$

Thus $\left(x-(x-1) p_{d}^{\alpha_{d}} \widetilde{K}_{d}^{\prime}\right)^{p}=1[n]$ and consequently $(1+$ $\left.p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{d}\right)^{p}=1[n]$.
Suppose that it exists some integers $K_{t}, K_{2}, \ldots, K_{d}$ and K_{t}^{\prime} such as :

$$
x=1+\sum_{i=t}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{d}^{\alpha_{d}} A K_{i}+p_{t}^{\alpha_{t}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}
$$

and

Let \widetilde{K}_{t-1} and $\widetilde{K}_{t-1}^{\prime}$ be two integers such as

$$
1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{\alpha_{t-1}}} \widetilde{K}_{t-1}+p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}(\star \star)
$$

and therefore

$$
\begin{gathered}
p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}=p_{1}^{\alpha_{1}} \ldots p_{t-1}^{\vee_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}+ \\
p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}
\end{gathered}
$$

We have

$$
\begin{aligned}
& \left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1-p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}\right)^{p} \\
= & \left(\left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1\right)\left(1-p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}\right)+\right. \\
& \left.p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}\right)^{p} \\
= & \left(\left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1\right) p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}+\right. \\
& \left.p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}\right)^{p} \\
= & \left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1\right)^{p}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}\right)^{p}+ \\
& \left(p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}\right)^{p}\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}}\right]
\end{aligned}
$$

however

$$
\begin{aligned}
& \left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1\right)^{p} \\
= & \left(x-\sum_{i=t}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right)^{p} \\
= & x^{p}\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}} A\right] \\
= & 1\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}} A\right]
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1-p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}\right)^{p} \\
= & \left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}\right)^{p}+ \\
& \left(p_{t-1}^{\alpha_{t-1}} \widetilde{K}_{t-1}^{\prime}\right)^{p}\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}}\right] \\
= & 1\left[p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t-1}^{\alpha_{t-1}}\right] \text { from }(\star \star)
\end{aligned}
$$

also it is clear that

$$
\begin{aligned}
& \left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1-p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}\right)^{p}= \\
& 1\left[p_{d}^{\alpha_{d}} \ldots p_{t}^{\alpha_{t}} A\right]
\end{aligned}
$$

and so
$\left(p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime}+1-p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}\right)^{p}=1[n]$
That means

$$
\left(1+p_{1}^{\alpha_{1}} \ldots p_{t-1}^{\vee_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t}^{\prime} \widetilde{K}_{t-1}\right)^{p}=1[n] .
$$

We set $K_{t-1}=K_{t}^{\prime} \widetilde{K}_{t-1}$ and $K_{t-1}^{\prime}=K_{t}^{\prime} \widetilde{K}_{t-1}^{\prime}$, we obtain so

$$
\begin{aligned}
x= & 1+\sum_{i=t}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee} \ldots p_{d}^{\alpha_{d}} A K_{i}+ \\
& p_{1}^{\alpha_{1}} \ldots p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t-1}+p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t-1}^{\prime} \\
= & 1+\sum_{i=t-1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}+ \\
& p_{t-1}^{\alpha_{t-1}} \ldots p_{d}^{\alpha_{d}} A K_{t-1}^{\prime}
\end{aligned}
$$

with

Thus by induction, we obtain

$$
\begin{aligned}
x & =1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{d}^{\alpha_{d}} A K_{i}+p_{1}^{\alpha_{1}} \ldots p_{d}^{\alpha_{d}} A K_{1}^{\prime} \\
& =1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots v_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i} \quad[n]
\end{aligned}
$$

with $\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right)^{p}=1[n], \forall 1 \leq i \leq d$
Corollary 2.2: Any final p-th root of unity modulo n is a product of d initial p-th roots associated respectively to $p_{1}, p_{2} \ldots$ and p_{d}.

Proof :

From the precedent theorem, it exists some integers $K_{1}, K_{2}, \ldots, K_{d}$ such as:

$$
x=1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}
$$

and

$$
\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{\alpha_{i}}}^{\left.\ldots p_{d}^{\alpha_{d}} A K_{i}\right)^{p}=1[n] \quad \forall 1 \leq i \leq d . d .}\right.
$$

If we set $x_{i}=1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}$, then x_{i} is a p-th root of unity modulo n also from the construction of K_{i} in the preceding proof, K_{i} is not divisible by p_{i}. Thus x_{i} is an initial p-th root associated to p_{i}. On the other hand we have

$$
\begin{aligned}
\prod_{i=1}^{d} x_{i} & =\prod_{i=1}^{d}\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right) \\
& =1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}[n]=x
\end{aligned}
$$

Corollary 2.3: Every p-th root of unity modulo n is a product of initial p-th roots.

Proof :

Let x be a p-th root of unity modulo n, if this root is final, then the result is immediate, otherwise there is x_{1}, x_{2}, \ldots and x_{t} such as $x . \prod_{i=1}^{t} x_{i}$ is final p-th root of unity modulo n and from the precedent corollary there exists y_{1}, y_{2}, \ldots and y_{d} initial p-th roots of unity modulo n associated respectively to $p_{1}, p_{2} \ldots$ and p_{d} such as $x . \prod_{i=1}^{t} x_{i}=\prod_{i=1}^{d} y_{i}$ and thus $x=\prod_{i=1}^{t} x_{i}^{-1} \cdot \prod_{i=1}^{d} y_{i}$ and as the set of initial p-th roots of unity modulo n associated to p_{i} form with 1 a group, then x can be written like following $x=\prod_{i=1}^{d} z_{i}$ with z_{i} is either 1 or an initial p-th root associated to p_{i}

Corollary 2.4: $\mathbf{G}_{p}(n)$ is generated by the initial $p-$ th roots of unity modulo n.

Remark :

As for each p_{i} the set of initial p-th roots of unity modulo n associated to p_{i} form with 1 a cyclic group then

$$
\mathbf{G}_{p}(n)=<x_{1}, x_{2}, \ldots, x_{d}>
$$

with x_{i} an initial p-th root of unity modulo n associated to p_{i}.

Theorem 2.4: The map

$$
\begin{aligned}
\varphi: \mathbf{G}_{p}^{p_{1}}(n) \times \mathbf{G}_{p}^{p_{2}}(n) \ldots \times \mathbf{G}_{p}^{p_{d}}(n) & \longrightarrow \\
\left(x_{1}, x_{2}, \ldots, x_{d}\right) & \longmapsto
\end{aligned} \mathbf{G}_{p}(n) \cdot x_{2}, \ldots x_{d} .
$$

is an isomorphism of groups.

Proof :

We have shown that φ is a surjective morphism of groups, remains to prove that it is injective.
We have $\varphi\left(x_{1}, x_{2}, \ldots, x_{d}\right)=1 \Longleftrightarrow x_{1} \cdot x_{2}, \ldots x_{d}=1$, assume that there exists an integer i such that $x_{i} \neq 1$, then we can easily verify that $x_{1} \cdot x_{2}, \ldots x_{d}-1$ is also not divisible by p_{i} but this is absurd, thus $x_{i}=1$ for all i and hence φ is injective

From the previous theorem it is clear that $\operatorname{Card}\left(\mathbf{G}_{p}(n)\right)=p^{d}$, where d is a number of distinct prime factors q of n such that p divides $q-1$, that is to say $d=\alpha_{p}(n)$ and we obtain the following result :

Corollary 2.5:

$$
\operatorname{Card}\left(\mathbf{G}_{p}(n)\right)=p^{\alpha_{p}(n)} .
$$

Remark :
From the previous theorem we have
$\mathbf{G}_{p}(n)=\left\{\prod_{\left(i_{1}, i_{2}, ., i_{d}\right) \in I^{d}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}} \quad\right.$, with $\left.I=\{1,2, . ., p\}\right\}$
with x_{i} is a generator of the cyclic group $\mathbf{G}_{p}^{p_{i}}(n)$.
We give now an algorithm written in Maple that allows us from an integer n and an odd prime p, as described in this foregoing, to give a generating set of $\mathbf{G}_{p}(n)$.

Gene_p $:=\operatorname{proc}(n, p) \quad$ local LB,LD,, LFact, GEN, P; $L D:=[] ; L B:=[] ; G E N:=[] ;$
LFact $:=$ ifactors $(n)[2]$;
for i from 1 to nops(LFact) do
if $($ LFact $[i][1]-1 \bmod p=0)$ then
$L D:=[o p(L D)$, LFact $[i]] ;$
end :
end :
for i from 1 to nops $(L D)$ do
$P:=\operatorname{convert}($ Berlekamp $(\widehat{x p}-1, x) \bmod L D[i][1]$, list $)$; if $(P[1]-x+1 \bmod L D[i][1]<>0)$ then
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1)^{\wedge} L D[i][2]\right), P[1]-x+\right.$ 1);
$G E N:=\quad[o p(G E N),((L D[i][1] * L B[1]-(P[1]-$
x) $\left.\bmod n)) \&^{\wedge}\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
else
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1]^{\wedge} L D[i][2]\right), P[2]-x+\right.$ 1);
$G E N:=[o p(G E N),(L D[i][1] * L B[1]-(P[2]-x) \bmod n) \& \wedge$ $\left.\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
end :
end :
if $(G E N=[])$ then
$G E N:=[1] ;$
end :
$\operatorname{eval}(G E N)$;
end :
Algorithm 2.2
A sample application :
Let $n=53 * 79 * 131 * 17 * 19$ and $p=13$, to find a generating set of the group formed by the p-th roots of unity modulo n, it suffices to use the previous algorithm with the command line Gene $_p(n, 13)$. The displayed result is [50140906, 174921943, 71677254], which represents the list of generators of this group.

Remark :

In the case when this algorithm return [1], then this means that $G_{p}(n)=\{1\}$.

Case 2: $\alpha=1$

Let n be an integer whose decomposition into prime factors is $n=p p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $p_{i} \neq p$ for all i and let x be a p-th root of unity modulo n, the above results show that if p does not divide $p_{i}-1$ then $p_{i}^{\alpha_{i}}$ divides $x-1$, on the other hand we have $x^{p}=1[n]$ implies that p divides $(x-1)(1+$ $x+. .+x^{p-1}$) and from the lemma 2.1 we obtain p divides $x-1$ and $1+x+. .+x^{p-1}$.
Also provided p divides $\lambda(n)$ implies that there exists at least one integer i such that p divides $p_{i}-1$. For a fixed permutation we can write $n=p p_{1}^{\alpha_{1}} \ldots p_{d}^{\alpha_{d}} \ldots p_{m}^{\alpha_{m}}$ with p divides $p_{i}-1$ for all $i \in\{1, . ., d\}$ and does not divide $p_{i}-1$ for every $i \in$ $\{d+1, . ., m\}$. Assume for the following $p_{d+1}^{\alpha_{d+1}} \ldots p_{m}^{\alpha_{m}}=A$. We define in the same manner the initial p-th roots of unity modulo n by replacing A with $p A$. The initial p-th roots of unity modulo n associated to $p_{i}, i \in\{1, . ., d\}$ are the solutions of the system :

$$
\left\{\begin{array}{l}
x-1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}}}{ } \ldots p_{d}^{\alpha_{d}} p A K \\
1+x+x^{2}+. .+x^{p-1}=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

We show in the same manner that this system has exactly $p-1$ roots modulo n. Thus for all $i \in\{1, \ldots, d\}$ there are $p-1$ initial p-th roots associated to p_{i}. We also show that the initial p-th roots of unity modulo n associated to p_{i} form with 1 a cyclic subgroup of $\mathbf{G}_{p}(n)$ of cardinality p and it is denoted as $\mathbf{G}_{p}^{p_{i}}(n)$.
We define in the same way a final p-th root of unity and its conjugate by replacing A by $p A$ and we obtain the following theorem :

Theorem 2.5: Let x be a final p-th root of unity modulo n, then there exists integers $K_{1}, K_{2}, \ldots, K_{d}$ such that :

$$
x=1+\sum_{i=1}^{d} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{p_{i}^{\alpha_{i}}} \ldots p_{d}^{\alpha_{d}} p A K_{i}
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934
 Vol:4, No:7, 2010

and

$$
\left(1+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{p}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} p A K_{i}\right)^{p}=1[n] \quad \forall 1 \leq i \leq d
$$

Indeed to prove this result we can just proceed as above and replacing A by $p A$.
We deduce that any final p-th root of unity modulo n is the product of d initial p-th roots associated respectively to p_{1}, p_{2}, \ldots and p_{d}. Hence every p-th root of unity is the product of initial p-th roots, and we can show that $\mathbf{G}_{p}(n)$ is generated by the initial p-th roots of unity and more precisely if we denote x_{i} an initial p-th root of unity associated to p_{i}, then

$$
\mathbf{G}_{p}(n)=<x_{1}, x_{2}, \ldots, x_{d}>.
$$

Also we have the following results :
Theorem 2.6: The map

$$
\begin{aligned}
\varphi: \mathbf{G}_{p}^{p_{1}}(n) \times \mathbf{G}_{p}^{p_{2}}(n) \ldots \times \mathbf{G}_{p}^{p_{d}}(n) & \longrightarrow \mathbf{G}_{p}(n) \\
\left(x_{1}, x_{2}, \ldots, x_{d}\right) & \longmapsto x_{1} \cdot x_{2}, \ldots x_{d}
\end{aligned}
$$

is an isomorphism of groups.
Corollary 2.6:

$$
\operatorname{Card}\left(\mathbf{G}_{p}(n)\right)=p^{\alpha_{p}(n)} .
$$

Remark :
From the previous theorem we can easily show that
$\mathbf{G}_{p}(n)=\left\{\prod_{\left(i_{1}, i_{2}, ., i_{d}\right) \in I^{d}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}} \quad\right.$, with $\left.I=\{1,2, . ., p\}\right\}$
with x_{i} is a generator of the cyclic group $\mathbf{G}_{p}^{p_{i}}(n)$.
Finally, note that Algorithm 2.2 remains valid in this case.

Case 3: $\alpha \geq 2$
Let n be an integer whose decomposition into prime factors is $n=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $p_{i} \neq p$ for all i and $\alpha \geq 2$. The fact that $\alpha \geq 2$ ensures that $\mathbf{G}_{p}(n)$ is not reduced to $\{1\}$. Suppose that for every i, p does not divide $p_{i}-1$ and let x be a p-th root of unity modulo n, then $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ divides $x-1$ and by Proposition 2.2 it follows that $p^{\alpha-1}$ divides $x-1$. So x is a solution of the system

$$
\left\{\begin{array}{l}
x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+. .+x^{p-1}=K^{\prime}
\end{array}\right.
$$

But this system has p solutions modulo n which are $1,1+n / p, 1+2 n / p, .$. and $1+(p-1) n / p$. Then we obtain the following result:

Proposition 2.5: Let $n=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ with $\alpha \geq 2$ and p does not divide $p_{i}-1$ for all i, then

$$
\mathbf{G}_{p}(n)=\{1+k n / p ; \quad 0 \leq k \leq p-1\}
$$

Remark:
It is clear that $\mathbf{G}_{p}(n)$ is a cyclic group of order p.

We will now exclude this case from our study, that is, there exists at least i such that p divides $p_{i}-1$. For a fixed permutation we can write $n=p^{\alpha} p_{1}^{\alpha_{1}} \ldots p_{d}^{\alpha_{d}} \ldots p_{m}^{\alpha_{m}}$ with p divides $p_{i}-1$ for all $i \in\{1, . ., d\}$ and does not divide $p_{i}-1$ for all $i \in\{d+1, . ., m\}$ and assume for the rest of this paper $p_{d+1}^{\alpha_{d+1}} \cdots p_{m}^{\alpha_{m}}=A$.

Definition 2.5: Let x be a p-th root of unity modulo n, x is said of class zero if $x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K$ with K an integer.

It is clear that there are $p p$-th roots of unity of class zero which are $\{1+k n / p ; \quad 0 \leq k \leq p-1\}$ and one can easily verify that they form a cyclic group of order p denoted $\mathbf{G}_{p}^{0}(n)$.

Definition 2.6: Let x be a p-th root of unity modulo n, it said initial root if every $p_{i}, i \in\{1, \ldots, d\}$ divides $x-1$ except for only one p_{i}. We said that this root is associated to p_{i}. And we write :

$$
x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}}}{\ldots p_{d}^{\alpha_{d}} A K . . .}
$$

with K an integer that is not divided by p_{i}.
Theorem 2.7: There exists $p^{2}-p$ initial p-th roots of unity associated to p_{i} for all $1 \leq i \leq d$.

Proof:
We may assume $i=1$, the initial p-th roots associated to p_{1} are the solutions of the system :

$$
\left\{\begin{array}{l}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K \\
1+x+x^{2}+. .+x^{p-1}=p_{1}^{\alpha_{1}} K^{\prime}
\end{array}\right.
$$

and we conclude with the following lemmas.
Lemma 2.5: The following systems have the same number of solutions respectively modulo n and $n / p_{1}^{\alpha_{1}-1}$.

$$
\begin{align*}
& \left\{\begin{array}{l}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1}^{\alpha_{1}} K^{\prime}
\end{array}\right. \\
& \left\{\begin{array}{l}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1} K^{\prime}
\end{array}\right.
\end{align*}
$$

Proof :
It is clear that any solution of (\star) is a solution of $(* *)$. Reciprocally let x be a solution of ($(*)$, then $x^{p} \equiv 1\left[p^{\alpha} p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A\right]$ that is to say $x^{p}=1+$ $p^{\alpha} p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{1}$ and therefore

$$
\begin{aligned}
x^{p p_{1}^{\alpha_{1}-1}} & =\left(1+p^{\alpha} p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{1}\right)^{p_{1}^{\alpha_{1}-1}} \\
& =1+\sum_{i=1}^{p_{1}^{\alpha_{1}-1}-1} \mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}\left(p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{1}\right)^{i} \\
& +\left(p^{\alpha} p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{1}\right)^{p_{1}^{\alpha_{1}-1}}
\end{aligned}
$$

It is easily verified that all $\mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}$ are divisible by $p_{1}^{\alpha_{1}-1}$ and $p_{1}^{\alpha_{1}-1} \geq \alpha_{1}$, then $x^{p p_{1}^{\alpha_{1}-1}} \equiv 1[n]$. On the other hand

$$
\begin{aligned}
x^{p_{1}^{\alpha_{1}-1}} & =\left(1+p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K\right)^{p_{1}^{\alpha_{1}-1}} \\
& =1+\sum_{i=1}^{p_{1}^{\alpha_{1}-1}-1} \mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}\left(p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K\right)^{i} \\
& +\left(p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K\right)^{p_{1}^{\alpha_{1}-1}}
\end{aligned}
$$

And as $\mathbf{C}_{p_{1}^{\alpha_{1}-1}}^{i}$ are divisible by p_{1} and K is not divisible by p_{1}, then $x^{p_{1}^{\alpha_{1}-1}}-1$ is divisible by all p_{i} except p_{1}. Consequently $x^{p_{1}^{\alpha_{1}-1}}$ is a solution of (\star).
Let x and y be two solutions of ($* *$) such that $x^{p_{1}^{\alpha_{1}-1}}=y^{p_{1}^{\alpha_{1}-1}}[n]$ thus $x^{p_{1}^{\alpha_{1}-1}}=y^{p_{1}^{\alpha_{1}-1}}\left[p_{1}\right]$. Hence $x \equiv y\left[p_{1}\right]$, on the other hand it is clear that $x \equiv y\left[p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A\right]$ therefore $x \equiv y\left[p_{1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A\right]$. We conclude then that the systems (\star) and ($* \star$) have the same number of solutions respectively modulo n and $n / p_{1}^{\alpha_{1}-1}$.

Lemma 2.6: The following system have $p^{2}-p$ solutions modulo $n / p_{1}^{\alpha_{1}-1}$.

$$
\left\{\begin{array}{l}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}} K \\
1+x+x^{2}+\ldots+x^{p-1}=p_{1} K^{\prime}
\end{array}\right.
$$

Proof:
We know that

$$
X^{p}-1=\prod_{i=1}^{p}\left(X-\gamma_{i}\right)
$$

and as 1 is a root of $X^{p}-1$ then we take $\gamma_{1}=1$. Finally, we obtain

$$
1+X+X^{2}+\ldots X^{p-1}=\prod_{i=2}^{p}\left(X-\gamma_{i}\right)
$$

and consequently $(\star \star)$ is equivalent to the following systems :

$$
\begin{aligned}
& \left\{\begin{array}{c}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{2} \\
x-\gamma_{2}=p_{1} K_{2}^{\prime} \\
\vdots
\end{array}\right. \\
& \left\{\begin{array}{c}
x-1=p^{\alpha-1} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K_{p} \\
x-\gamma_{p}=p_{1} K_{p}^{\prime}
\end{array}\right.
\end{aligned}
$$

It is clear that for each one of these systems have p solutions modulo $n / p_{1}^{\alpha_{1}-1}$. Since, the solutions of these systems are distinct, we conclude that $(\star \star)$ have $p(p-1)$ solutions modulo $n / p_{1}^{\alpha_{1}-1}$.

Proposition 2.6: The set formed by the initial p-th roots of unity modulo n associated to p_{i} and by the elements of $\mathbf{G}_{p}^{0}(n)$ is a subgroup of $\mathbf{G}_{p}(n)$ denoted $\mathbf{G}_{p}^{p_{i}}(n)$ and we have $\operatorname{Card}\left(\mathbf{G}_{p}^{p_{i}}(n)\right)=p^{2}$.

Proof :
Let x and y be two elements of $\mathbf{G}_{p}^{p_{i}}(n)$, there are three cases
to distinguish :

- If x and y are in $\mathbf{G}_{p}^{0}(n)$, then in this case $x y$ belongs $\mathbf{G}_{p}^{0}(n)$ since the latter is a group and hence $x y$ is in $\mathbf{G}_{p}^{p_{i}}(n)$.
- If x and y are respectively in $\mathbf{G}_{p}^{p_{i}}(n) \backslash \mathbf{G}_{p}^{0}(n)$ and $\mathbf{G}_{p}^{0}(n)$, then we have $x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K$ and $y-$ $1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}$ with K an integer not divisible by p_{i} thus

$$
x y=1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee p_{i}^{\alpha_{i}}}{\ldots p_{d}^{\alpha_{d}} A\left(K+p_{i}^{\alpha_{i}} K^{\prime}\right) ~}
$$

The term $K+p_{i}^{\alpha_{i}} K^{\prime}$ is not divided by p_{i} and therefore $x y$ is a p-th root of unity associated to p_{i}. Hence $x y$ is in $\mathbf{G}_{p}^{p_{i}}(n)$. - If x and y are in $\mathbf{G}_{p}^{p_{i}}(n) \backslash \underset{V_{p}}{\mathbf{G}}(n)$, then :
$x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K$ and $y-1=$ $p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}$ with K and K^{\prime} are two integers not divided by p_{i} therefore

$$
\begin{aligned}
x y & =1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee} \ldots p_{d}^{\alpha_{i}} A\left(K+K^{\prime}\right. \\
& \left.+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K K^{\prime}\right)
\end{aligned}
$$

If the term $K+K^{\prime}+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K K^{\prime}$ is divided by p_{i} then $x y$ belongs to $\mathbf{G}_{p}^{0}(n) \subset \mathbf{G}_{p}^{p_{i}}(n)$, otherwise $x y$ is a p-th root associated to p_{i} and consequently $x y$ is in $\mathbf{G}_{p}^{p_{i}}(n)$.
Thus $\mathbf{G}_{p}^{p_{i}}(n)$ is stable for the product and as the inverse of the element x is x^{p-1}, then $\mathbf{G}_{p}^{p_{i}}(n)$ is stable by the inverse operation which proves that $\mathbf{G}_{p}^{p_{i}}(n)$ is a subgroup of $\mathbf{G}_{p}(n)$. Finally, we can see that $\mathbf{G}_{p}^{0}(n)$ does not contain an initial p-th root associated to p_{i} which allows us to conclude that $\operatorname{Card}\left(\mathbf{G}_{p}^{p_{i}}(n)\right)=\left(p^{2}-p\right)+p=p^{2}$.

Definition 2.7: Let x be a p-th root, we said that x is of the first class if p^{α} divides $x-1$, otherwise it said to be of the second class.

Proposition 2.7: There are $p-1$ initial p-th roots of unity associated to p_{i} which are of the first class.

Proof :

The initial p-th roots associated to p_{i} which are of first class are solutions of the system :

$$
\left\{\begin{array}{l}
x-1=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K \\
x+1=p_{i}^{\alpha_{i}} K^{\prime}
\end{array}\right.
$$

And from the previous we know that this system has $p-1$ solutions modulo n.
Let denote by $\mathbf{G}_{p}^{+}{ }^{p_{i}}(n)$ the set formed by 1 and the initial p-th roots of unity associated to p_{i} that are of the first class and we can easily verify that $\mathbf{G}_{p}^{+}{ }_{p}^{p_{i}}(n)$ is a cyclic subgroup of $\mathbf{G}_{p}(n)$ of cardinality p and we have the following result :

Proposition 2.8: The map

$$
\begin{aligned}
\varphi: \mathbf{G}_{p}^{p_{i}}(n) \times \mathbf{G}_{p}^{0}(n) & \longrightarrow \mathbf{G}_{p}^{p_{i}}(n) \\
(x, y) & \longmapsto x . y
\end{aligned}
$$

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:4, No:7, 2010
is an isomorphism of groups.

Proof:
It is clear that φ is surjective morphism of groups. For the injectivity, let us consider two elements x and y of $\mathbf{G}_{p}^{+}(n)$ and $\mathbf{G}_{p}^{0}(n)$ respectively such that $x . y=1$, we have :
$x-1=p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\vee}{\vee} p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K$ and $y-1=$ $p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}$, therefore

$$
x y=1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee \alpha_{i}} \ldots p_{d}^{\alpha_{d}} A\left(K+p_{i}^{\alpha_{i}} K^{\prime}\right)
$$

As $x . y=1$, then the term $K+p_{i}^{\alpha_{i}} K^{\prime}$ is divided by $p_{i}^{\alpha_{i}}$ therefore $p_{i}^{\alpha_{i}}$ divides K, hence $x=y=1$

Definition 2.8: Let x be a p-th root of unity modulo n, we said x is final if all the $p_{i}, i \in\{1, \ldots, d\}$ does not divide $x-1$, which means $x-1=p^{\alpha-1} A K$, with K an integer not divisible by $p_{i}, i \in\{1, . ., d\}$.

Proposition 2.9: Any final p-th root of unity modulo n can be written in a single manner as product of a final p-th root of the first class by a class zero's p-th root.

Proof:

Let x be a final p-th root of unity modulo n and let's consider an integer y of the form $y=1+p^{\alpha} A K$ and z a class zero's p-th root. We have :

$$
\begin{aligned}
x=y z & \Longleftrightarrow x=\left(1+p^{\alpha} A K\right)\left(1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}\right) \\
& \Longleftrightarrow x-1=p^{\alpha} A K+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime} \\
& \Longleftrightarrow \frac{x-1}{p^{\alpha-1} A}=p K+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} K^{\prime}
\end{aligned}
$$

This equation has solutions K and K^{\prime}, also $\left(1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}\right)^{p}=1, \quad$ therefore $\left(1+p^{\alpha} A K\right)^{p}=1$ and as $x-1$ is divisible by none of the p_{i} which implies that K is divisible by none of the p_{i}, this proves that $\left(1+p^{\alpha} A K\right)$ is a final p-th root of the first class. Also it is clear that if we take K and K^{\prime} as other solutions, then $1+p^{\alpha} A K$ and $1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{d}^{\alpha_{d}} A K^{\prime}$ are the same modulo n.

Remark :

If for all $i \in\{1, . ., d\}$ we take x_{i} an initial p-th root of the first class associated to p_{i}, then $\prod_{i=1}^{d} x_{i}$ is a final root of the first class. The following theorem shows that any final root of the first class is a product of this form.

Theorem 2.8: Any final p-th root of the first class is product of d initial p-th roots of the first class associated respectively to $p_{1}, p_{2}, .$. and p_{d}.

Proof:
Let x be a final p-th root of the first class, we know that there
exist $K_{1}, K_{2}, .$. and K_{d} such that

$$
x=1+\sum_{i=1}^{d} p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee} \ldots p_{d}^{\alpha_{d}} A K_{i}
$$

and

$$
\left(1+p^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{\left.\vee p_{i}^{\alpha_{i}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right)^{p}=1[n] \quad \forall 1 \leq i \leq d . . . ~}{\text {. }}\right.
$$

 an initial p-th root of the first class associated to p_{i} and we can easily verify that $x=\prod_{i=1}^{d} x_{i}$.

Definition 2.9: Let x and y be two p-th roots of unity modulo n, we say y is a final conjugate root of x if $x . y-1$ is divisible by none of the $p_{i}, i \in\{1, \ldots, d\}$, that means $x . y$ is a final p-th root modulo n.

Proposition 2.10: Any p-th root of unity modulo n have a final conjugate.

Proof :

Let x be a p-th root of unity modulo n, if $x \in \mathbf{G}_{p}^{0}(n)$ or x is a final p-th root then we have the expected result. When $d=1$, a final p-th root is an initial p-th root associated to p_{1} and therefore any root that not belongs to $\mathbf{G}_{p}^{0}(n)$ are finals. Assume that $d \geq 2$ and $x-1$ is divisible by a nonempty subfamily of p_{i} of cardinality $t<d$ and for a permutation, we can assume them p_{1}, p_{2}, \ldots and p_{t}. Thus

$$
x-1=p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}} A K
$$

with K an integer not divisible by $p_{i}, i \in\{t+1, . ., d\}$. For all $i \in\{1, . ., t\}$, let x_{i} be an initial p-th associated to p_{i} therefore
with K_{i} not divided by p_{i}, whereof
$\prod_{i=1}^{t} x_{i}=\prod_{i=1}^{t}\left(1+p^{\alpha-1} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\vee p_{i}} \ldots p_{t}^{\alpha_{t}} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A K_{i}\right)$
$=1+p^{\alpha-1} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A \sum_{i=1}^{t} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \stackrel{v}{i}_{\alpha_{i}}^{\alpha_{i}} \ldots p_{t}^{\alpha_{t}} K_{i}+K^{\prime} n$

$i \in\{1, \ldots, t\}$. Consequently $y=\prod_{i=1}^{t} x_{i}$ is a root which verify $y=1+p^{\alpha-1} p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M$ with M an integer that not divided by $p_{i}, i \in\{1, . ., t\}$. Thereby

$$
x . y=1+p^{\alpha-1} A\left(p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M+p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}} A K\right)
$$

It is clear that $\left(p_{t+1}^{\alpha_{t+1}} \ldots p_{d}^{\alpha_{d}} A M+p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}} A K\right)$ is divisible by none of the $p_{i}, i \in\{1, . ., d\}$, hence the result.

Corollary 2.7: Every p-th root of unity is a product of a first class initial p-th roots by a class zero's p-th root.

Proof:

Let x be a p-th root modulo n, if x is final then we can write it as a product of a final p-th root of unity of the first class by a class zero's p-th root and from the previous results this final p-th root of the first class is product of d initial p-th roots of the first class associated respectively to $p_{1}, p_{2}, .$. and p_{d}, hence the result. Now let us assume that x is not a final p-th root so there exists $x_{1}, x_{2}, .$. and x_{t} initial p-th roots such that $x_{1} x_{2} \ldots x_{t}$ is a final conjugate of x, then $x x_{1} x_{2} \ldots x_{t}$ is a final p-th root, and we have :

$$
x x_{1} x_{2} . . x_{t}=y_{1} y_{2} . . y_{d} y_{0}
$$

with y_{i} is an initial p-th root of the first class associated to p_{i} and y_{0} is a class zero's p-th root.
From Proposition 2.8 any initial p-th root associated to p_{i} can be written uniquely as a product of an initial first class p-th root associated to p_{i} by class zero's p-th root. Thereby $x_{i}=\stackrel{+}{x_{i}} z_{i}$, with $\stackrel{+}{x_{i} \in \mathbf{G}_{p}^{p_{1}}}(n)$ and $z_{i} \in \mathbf{G}_{p}^{0}(n)$. So

$$
x=y_{1} y_{2} . . y_{d}\left(\dot{x}_{1} \dot{x}_{2}^{+} \ldots \stackrel{+}{x_{t}}\right)^{-1}\left(z_{1} z_{2} \ldots z_{t}\right)^{-1} y_{0}
$$

and as $\stackrel{+}{\mathbf{G}_{p}^{p_{1}}}(n)$ and $\mathbf{G}_{p}^{0}(n)$ are groups, then we obtain the result.

Remark:

The previous result shows that $\mathbf{G}_{p}(n)$ is generated by the initial p-th roots of the first class and the class zero's p-th roots and as $\mathbf{G}_{p}^{0}(n)$ and $\mathbf{G}_{p}^{+}(n)$ are cyclic groups, then

$$
\mathbf{G}_{p}(n)=<x_{1}, x_{2}, \ldots, x_{d}, x_{0}>
$$

with x_{i} is an initial p-th root of the first class associated to p_{i} and x_{0} is a p-th root of the class zero distinct from 1. More generally, we have the following result :

We now give an algorithm in MAPLE that allows us to find a generating set of $\mathbf{G}_{p}(n)$. For the computing of x_{0} it suffices to take $x_{0}=1+n / p$ and for the others x_{i}, we proceed as above.

Gene_p:=proc (n, p) local LB,LD, i, LFact, GEN, P; $L D:=[] ; L B:=[] ; G E N:=[] ;$
$G E N:=[o p(G E N), 1+n / p] ;$
LFact $:=$ ifactors(n)[2];
for i from 1 to nops(LFact) do
if $($ LFact $[i][1]-1 \bmod p=0)$ then
$L D:=[o p(L D), L F a c t[i]] ;$
end:
end:
for i from 1 to nops $(L D)$ do
$P:=\operatorname{convert}(\operatorname{Berlekamp}(\widehat{x p}-1, x) \bmod L D[i][1]$, list); if $(P[1]-x+1$ mod $L D[i][1]<>0)$ then
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1]^{\wedge} L D[i][2]\right), P[1]-x+\right.$ 1);
$G E N:=\quad[o p(G E N),((L D[i][1] * L B[1]-(P[1]-$ x) $\left.\bmod n)) \&^{\wedge}(L D[i][1] \wedge(L D[i][2]-1)) \bmod n\right]$; else
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1]^{\wedge} L D[i][2]\right), P[2]-x+\right.$ 1);
$G E N \quad:=[o p(G E N),(L D[i][1] * L B[1]-(P[2]-$ x) $\left.\bmod n) \mathcal{\&}^{\wedge}\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
end :
end:
if $(G E N=[])$ then
GEN := [1];
end;
eval(GEN);
end :
Algorithm 2.3

III. Conclusion

For the cardinality of $\mathbf{G}_{p}(n)$, we can summarize it in the following theorem :

Theorem 3.1: Let $n \geq 3$ be an integer and p be a prime odd number which does not divide n, then :

- $\operatorname{Card}\left(\mathbf{G}_{p}(n)\right)=p^{\alpha_{p}(n)}$
- $\operatorname{Card}\left(\mathbf{G}_{p}(p n)\right)=p^{\alpha_{p}(n)}$
- $\operatorname{Card}\left(\mathbf{G}_{p}\left(p^{\alpha} n\right)\right)=p^{\alpha_{p}(n)+1}$ with $\alpha \geq 2$

We will now give an algorithm which help us to find, from a fixed integer n, a generating set of $\mathbf{G}_{p}(n)$.

Gene_p $:=\operatorname{proc}(n, p) \quad$ local LB, LD $, i, L F a c t, G E N, P ;$
$L D:=[] ; L B:=[] ; G E N:=[] ;$
if $\left(n \bmod p^{\wedge} 2=0\right)$ then
$G E N:=[o p(G E N), 1+n / p] ;$
LFact :=ifactors(n)[2];
for i from 1 to nops(LFact) do
if $($ LFact $[i][1]-1 \bmod p=0)$ then

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:4, No:7, 2010
$L D:=[o p(L D), L F a c t[i]] ;$
end :
end :
for i from 1 to nops $(L D)$ do
$P:=\operatorname{convert}($ Berlekamp $(\widehat{x} p-1, x) \bmod L D[i][1]$, list $)$;
if $(P[1]-x+1 \bmod L D[i][1]<>0)$ then
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1)^{\wedge} L D[i][2]\right), P[1]-x+\right.$ 1);
$G E N:=\quad[o p(G E N),((L D[i][1] * L B[1]-(P[1]-$ x) $\left.\bmod n)) \&^{\wedge}(L D[i][1] \wedge(L D[i][2]-1)) \bmod n\right]$;
else
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1]^{\wedge} L D[i][2]\right), P[2]-x+\right.$ 1);
$G E N:=[o p(G E N),(L D[i][1] * L B[1]-(P[2]-$ x) $\left.\bmod n) \not \& \wedge\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
end:
end:
else
LFact $:=$ ifactors(n)[2];
for i from 1 to nops(LFact) do
if $($ LFact $[i][1]-1 \bmod p=0)$ then
$L D:=[o p(L D), L F a c t[i]] ;$
end :
end:
for i from 1 to nops $(L D)$ do
$P:=\operatorname{convert}($ Berlekamp $(\widehat{x p}-1, x) \bmod L D[i][1]$, list); if $(P[1]-x+1$ mod $L D[i][1]<>0)$ then
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1)^{\wedge} L D[i][2]\right), P[1]-x+\right.$ 1);
$G E N:=\quad[o p(G E N),((L D[i][1] * L B[1]-(P[1]-$ x) $\left.\bmod n)) \&^{\wedge}\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
else
$L B:=\operatorname{Bezout}\left(L D[i][1], n /\left(L D[i][1]^{\wedge} L D[i][2]\right), P[2]-x+\right.$ 1);
$G E N \quad:=[o p(G E N),(L D[i][1] * L B[1]-(P[2]-$ x) $\left.\bmod n) \&^{\wedge}\left(L D[i][1]^{\wedge}(L D[i][2]-1)\right) \bmod n\right]$;
end:
end:
end:
if $(G E N=[])$ then
GEN := [1];
end;
eval(GEN);
end :

[^0] -
[6] V. Shoup, A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2005.
[7] David M. Bressoud, Factorization and Primality Testing. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989.
[8] Elwyn R. Berlekamp. Factoring Polynomials Over Finite Fields. Bell Systems Technical Journal, 46:1853-1859, 1967.
[9] David G. Cantor and Hans Zassenhaus. A New Algorithm for Factoring Polynomials Over Finite Fields. Mathematics of Computation, 36:587592, 1981.
[10] Frank Garvan. The Maple Book. Chapman and Hall/CRC, Boca Raton, FL 2002

[^0]: Algorithm 2.4

 ## References

 [1] R. Omami, M. Omami and R. Ouni, Group of Square Roots of Unity Modulo n. International Journal of Computational and Mathematical Sciences, 2009
 [2] J-P. Serre, A Course in Arithmetic. Graduate Texts in Mathematics, Springer, 1996
 [3] S. Lang, Undergraduate Algebra, 2nd ed. UTM. Springer Verlag, 1990
 [4] Hardy, G. H, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999. G. H.
 [5] H. Cohen, A course in computational algebraic number theory. Springer-Verlag, 1993.

